Skip to main content

Intelligent Metaheuristic-based Extreme Learning Machine: IntelELM - An Open Source Python Library

Project description

IntelELM


GitHub release Wheel PyPI version PyPI - Python Version PyPI - Status PyPI - Downloads Downloads Tests & Publishes to PyPI GitHub Release Date Documentation Status Chat GitHub contributors GitTutorial DOI License: GPL v3

IntelELM (Intelligent Metaheuristic-based Extreme Learning Machine) is a Python library that implements a framework for training Extreme Learning Machine (ELM) networks using Metaheuristic Algorithms. It provides a comparable alternative to the traditional ELM network and is compatible with the Scikit-Learn library. With IntelELM, you can perform searches and hyperparameter tuning using the functionalities provided by the Scikit-Learn library.

  • Free software: GNU General Public License (GPL) V3 license
  • Total Wrapper-based (Metaheuristic Algorithms): > 200 methods
  • Total datasets: 54 (47 classifications and 7 regressions)
  • Total performance metrics: >= 67 (47 regressions and 20 classifications)
  • Total objective functions (as fitness functions): >= 61 (45 regressions and 16 classifications)
  • Documentation: https://intelelm.readthedocs.io/en/latest/
  • Python versions: >= 3.7.x
  • Dependencies: numpy, scipy, scikit-learn, pandas, mealpy, permetrics

Citation Request

If you want to understand how Metaheuristic is applied to Extreme Learning Machine, you need to read the paper titled "A Metaheuristic Optimization Approach for Extreme Learning Machine". The paper can be accessed at the following this link

Please include these citations if you plan to use this library:

@software{nguyen_van_thieu_2023_8249046,
  author       = {Nguyen Van Thieu},
  title        = {Intelligent Metaheuristic-based Extreme Learning Machine: IntelELM - An Open Source Python Library},
  month        = aug,
  year         = 2023,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.8249045},
  url          = {https://github.com/thieu1995/IntelELM}
}

@article{nguyen2020new,
  title={A new workload prediction model using extreme learning machine and enhanced tug of war optimization},
  author={Nguyen, Thieu and Hoang, Bao and Nguyen, Giang and Nguyen, Binh Minh},
  journal={Procedia Computer Science},
  volume={170},
  pages={362--369},
  year={2020},
  publisher={Elsevier},
  doi={10.1016/j.procs.2020.03.063}
}

@article{van2023mealpy,
  title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
  author={Van Thieu, Nguyen and Mirjalili, Seyedali},
  journal={Journal of Systems Architecture},
  year={2023},
  publisher={Elsevier},
  doi={10.1016/j.sysarc.2023.102871}
}

Installation

$ pip install intelelm==1.0.0
  • Install directly from source code
$ git clone https://github.com/thieu1995/intelelm.git
$ cd intelelm
$ python setup.py install
  • In case, you want to install the development version from Github:
$ pip install git+https://github.com/thieu1995/intelelm 

After installation, you can import IntelELM as any other Python module:

$ python
>>> import intelelm
>>> intelelm.__version__

Examples

In this section, we will explore the usage of the IntelELM model with the assistance of a dataset. While all the preprocessing steps mentioned below can be replicated using Scikit-Learn, we have implemented some utility functions to provide users with convenience and faster usage.

Combine IntelELM library like a normal library with scikit-learn.

### Step 1: Importing the libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from intelelm import ElmRegressor, ElmClassifier, MhaElmRegressor, MhaElmClassifier

#### Step 2: Reading the dataset
dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values

#### Step 3: Next, split dataset into train and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True, random_state=100)

#### Step 4: Feature Scaling
scaler_X = MinMaxScaler()
scaler_X.fit(X_train)
X_train = scaler_X.transform(X_train)
X_test = scaler_X.transform(X_test)

le_y = LabelEncoder()       # This is for classification problem only
le_y.fit(y)
y_train = le_y.transform(y_train)
y_test = le_y.transform(y_test)

#### Step 5: Fitting ELM-based model to the dataset

##### 5.1: Use standard ELM model for regression problem
regressor = ElmRegressor(hidden_size=10, act_name="relu")
regressor.fit(X_train, y_train)

##### 5.2: Use standard ELM model for classification problem 
classifer = ElmClassifier(hidden_size=10, act_name="tanh")
classifer.fit(X_train, y_train)

##### 5.3: Use Metaheuristic-based ELM model for regression problem
print(MhaElmClassifier.SUPPORTED_OPTIMIZERS)
print(MhaElmClassifier.SUPPORTED_REG_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
regressor = MhaElmRegressor(hidden_size=10, act_name="elu", obj_name="RMSE", optimizer="BaseGA", optimizer_paras=opt_paras)
regressor.fit(X_train, y_train)

##### 5.4: Use Metaheuristic-based ELM model for classification problem
print(MhaElmClassifier.SUPPORTED_OPTIMIZERS)
print(MhaElmClassifier.SUPPORTED_CLS_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
classifier = MhaElmClassifier(hidden_size=10, act_name="elu", obj_name="KLDL", optimizer="BaseGA", optimizer_paras=opt_paras)
classifier.fit(X_train, y_train)

#### Step 6: Predicting a new result
y_pred = regressor.predict(X_test)

y_pred_cls = classifier.predict(X_test)
y_pred_label = le_y.inverse_transform(y_pred_cls)

#### Step 7: Calculate metrics using score or scores functions.
print("Try my AS metric with score function")
print(regressor.score(X_test, y_test, method="AS"))

print("Try my multiple metrics with scores function")
print(classifier.scores(X_test, y_test, list_methods=["AS", "PS", "F1S", "CEL", "BSL"]))

Utilities everything that IntelELM provided

### Step 1: Importing the libraries
from intelelm import ElmRegressor, ElmClassifier, MhaElmRegressor, MhaElmClassifier, get_dataset

#### Step 2: Reading the dataset
data = get_dataset("aniso")

#### Step 3: Next, split dataset into train and test set
data.split_train_test(test_size=0.2, shuffle=True, random_state=100)

#### Step 4: Feature Scaling
data.X_train, scaler_X = data.scale(data.X_train, method="MinMaxScaler", feature_range=(0, 1))
data.X_test = scaler_X.transform(data.X_test)

data.y_train, scaler_y = data.encode_label(data.y_train)   # This is for classification problem only
data.y_test = scaler_y.transform(data.y_test)

#### Step 5: Fitting ELM-based model to the dataset

##### 5.1: Use standard ELM model for regression problem
regressor = ElmRegressor(hidden_size=10, act_name="relu")
regressor.fit(data.X_train, data.y_train)

##### 5.2: Use standard ELM model for classification problem 
classifer = ElmClassifier(hidden_size=10, act_name="tanh")
classifer.fit(data.X_train, data.y_train)

##### 5.3: Use Metaheuristic-based ELM model for regression problem
print(MhaElmClassifier.SUPPORTED_OPTIMIZERS)
print(MhaElmClassifier.SUPPORTED_REG_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
regressor = MhaElmRegressor(hidden_size=10, act_name="elu", obj_name="RMSE", optimizer="BaseGA", optimizer_paras=opt_paras)
regressor.fit(data.X_train, data.y_train)

##### 5.4: Use Metaheuristic-based ELM model for classification problem
print(MhaElmClassifier.SUPPORTED_OPTIMIZERS)
print(MhaElmClassifier.SUPPORTED_CLS_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
classifier = MhaElmClassifier(hidden_size=10, act_name="elu", obj_name="KLDL", optimizer="BaseGA", optimizer_paras=opt_paras)
classifier.fit(data.X_train, data.y_train)

#### Step 6: Predicting a new result
y_pred = regressor.predict(data.X_test)

y_pred_cls = classifier.predict(data.X_test)
y_pred_label = scaler_y.inverse_transform(y_pred_cls)

#### Step 7: Calculate metrics using score or scores functions.
print("Try my AS metric with score function")
print(regressor.score(data.X_test, data.y_test, method="AS"))

print("Try my multiple metrics with scores function")
print(classifier.scores(data.X_test, data.y_test, list_methods=["AS", "PS", "F1S", "CEL", "BSL"]))

A real-world dataset contains features that vary in magnitudes, units, and range. We would suggest performing normalization when the scale of a feature is irrelevant or misleading. Feature Scaling basically helps to normalize the data within a particular range.

  1. Where do I find the supported metrics like above ["AS", "PS", "RS"]. What is that? You can find it here: https://github.com/thieu1995/permetrics or use this
from intelelm import MhaElmClassifier, MhaElmRegressor

print(MhaElmRegressor.SUPPORTED_REG_OBJECTIVES)
print(MhaElmClassifier.SUPPORTED_CLS_OBJECTIVES)
  1. I got this type of error
raise ValueError("Existed at least one new label in y_pred.")
ValueError: Existed at least one new label in y_pred.

How to solve this?

  • This occurs only when you are working on a classification problem with a small dataset that has many classes. For instance, the "Zoo" dataset contains only 101 samples, but it has 7 classes. If you split the dataset into a training and testing set with a ratio of around 80% - 20%, there is a chance that one or more classes may appear in the testing set but not in the training set. As a result, when you calculate the performance metrics, you may encounter this error. You cannot predict or assign new data to a new label because you have no knowledge about the new label. There are several solutions to this problem.

  • 1st: Use the SMOTE method to address imbalanced data and ensure that all classes have the same number of samples.

import pandas as pd
from imblearn.over_sampling import SMOTE
from intelelm import Data

dataset = pd.read_csv('examples/dataset.csv', index_col=0).values
X, y = dataset[:, 0:-1], dataset[:, -1]

X_new, y_new = SMOTE().fit_resample(X, y)
data = Data(X_new, y_new)
  • 2nd: Use different random_state numbers in split_train_test() function.
import pandas as pd
from intelelm import Data

dataset = pd.read_csv('examples/dataset.csv', index_col=0).values
X, y = dataset[:, 0:-1], dataset[:, -1]
data = Data(X, y)
data.split_train_test(test_size=0.2, random_state=10)  # Try different random_state value 

Support (questions, problems)

Official Links

Related Documents

  1. https://analyticsindiamag.com/a-beginners-guide-to-extreme-learning-machine/
  2. https://medium.datadriveninvestor.com/extreme-learning-machine-for-simple-classification-e776ad797a3c
  3. https://www.extreme-learning-machines.org/
  4. https://web.njit.edu/~usman/courses/cs675_fall20/ELM-NC-2006.pdf
  5. https://m-clark.github.io/models-by-example/elm.html
  6. https://github.com/ivallesp/simplestELM
  7. https://www.javatpoint.com/elm-in-machine-learning

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

intelelm-1.0.0.tar.gz (4.1 MB view hashes)

Uploaded Source

Built Distribution

intelelm-1.0.0-py3-none-any.whl (4.2 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page