Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations of the number of algorithms (KNN and IALS) in C++.
  • Deal with user cold-start scenarios using "CB2CF" strategy, which I found very convenient in practice.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX, install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support).

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train and optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

# often, X_val is defined for a subset of users.
# `offset` specifies where the validated user blocks begin.
# In this split, X_val is defined for the same users as X_train,
# so offset = 0
evaluator = Evaluator(ground_truth=X_val, offset=0)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs.ndcg.max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • complete documentation
  • more splitting schemes
  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.tar.gz (126.6 kB view details)

Uploaded Source

Built Distributions

irspack-0-cp39-cp39-win_amd64.whl (471.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0-cp39-cp39-win32.whl (428.9 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0-cp39-cp39-manylinux2010_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0-cp39-cp39-manylinux2010_i686.whl (8.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0-cp39-cp39-macosx_10_9_x86_64.whl (578.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0-cp38-cp38-win_amd64.whl (471.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0-cp38-cp38-win32.whl (428.4 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0-cp38-cp38-manylinux2010_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0-cp38-cp38-manylinux2010_i686.whl (8.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0-cp38-cp38-macosx_10_9_x86_64.whl (578.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0-cp37-cp37m-win_amd64.whl (474.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0-cp37-cp37m-win32.whl (431.5 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0-cp37-cp37m-manylinux2010_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0-cp37-cp37m-manylinux2010_i686.whl (8.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0-cp37-cp37m-macosx_10_9_x86_64.whl (572.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0-cp36-cp36m-win_amd64.whl (474.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0-cp36-cp36m-win32.whl (431.4 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0-cp36-cp36m-manylinux2010_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0-cp36-cp36m-manylinux2010_i686.whl (8.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0-cp36-cp36m-macosx_10_9_x86_64.whl (572.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.tar.gz.

File metadata

  • Download URL: irspack-0.tar.gz
  • Upload date:
  • Size: 126.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.tar.gz
Algorithm Hash digest
SHA256 e91106498beb914fae944f958fbccac11ef9ba5f4db31cffeba43bb407a95b85
MD5 8fb38c0fcc80e67316bcbf24a0c688a0
BLAKE2b-256 7b4661037f00661aee03590d7dade620e1cbcd812c966c672f89e6d6a3134ee5

See more details on using hashes here.

File details

Details for the file irspack-0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 471.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e3d4b2d844204f27d60280e04cb8f1f99e882e2eae9a8777b25c14cb321075ae
MD5 26869eafdb7bdd3a573076bdc12fbf40
BLAKE2b-256 a7a51eeaf1ec039c053b07e388788dd3a90db4124254fc3923d77401a716e2af

See more details on using hashes here.

File details

Details for the file irspack-0-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 428.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3061c03134f97e4a40c2d2b6559f8c1e8873f64d1a00370f13ea6ead0e067d46
MD5 f4b8ee9821bb5790c2781cad059b0a5f
BLAKE2b-256 ce55532fef05363b2e6d436dda50613140cf7a9dff9bdb0d9552b33c9bf0916b

See more details on using hashes here.

File details

Details for the file irspack-0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4138fab3ef571d4a3cb2cb079ebd529937fa12616788ebe7f7351f7c2c0502a0
MD5 cf79c2743bbc269055436a39ff302c46
BLAKE2b-256 9eaa705268649af23e4b0fc7bd7e15ef1793ffbf3718a01d711eca1dbcd92cdd

See more details on using hashes here.

File details

Details for the file irspack-0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d42d1cdd9d94c60080380ef2431c6663fe76e743253afa71917f3b19d58bdb5e
MD5 7e1cc713062f301599eb213fcc810659
BLAKE2b-256 246c216c25f1c0899bcdc1dd517aebf06721b3a8e6117f01137a9e941b37ab56

See more details on using hashes here.

File details

Details for the file irspack-0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 578.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f143b9126aedf70e794e034eb58fe326e9aa587eb8b208b87e2a3131f1c1473
MD5 2333a34ee88a192187bcd42f87430918
BLAKE2b-256 3c59a2d59cddd992da2fbe3b0139493d691f930176e9d2f19d82cb3c2135428b

See more details on using hashes here.

File details

Details for the file irspack-0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 471.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 86410df5516dc32c37e5b75bde73720d6ce2608ab02bde38c0251ae970a2cfce
MD5 17f13c6ffee6201159e44ed7ea4b61fc
BLAKE2b-256 eb3c6901c42123316aa34c717e9adcf253dacde419573508c205048fe282df48

See more details on using hashes here.

File details

Details for the file irspack-0-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 428.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0066daa74346f7cf6692aba61c8096f66a18b2062466753c012b7a0dbe677655
MD5 f652e7ee0735721f8e8592e0688e9666
BLAKE2b-256 ad14cc04fdbbe7e79162ab217078563bd601b6695ab533c5776ad2e879702143

See more details on using hashes here.

File details

Details for the file irspack-0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a4c2ffe45a9a54d1900eb16a6f901b9a824b58f29f6d8a3a887711813fb555e2
MD5 e0e1e7423283d205861d02e0337882ee
BLAKE2b-256 520143b6e0af9ad60cac275dd4130b8256b4a779b0d0dfe752f99da51deb8b11

See more details on using hashes here.

File details

Details for the file irspack-0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9d90d8b0141bbe68d0b483d2d41207bcc706b2cb932ef29dfcc78dea08f7215b
MD5 3e91fbea96fbc6f8a09fb0c6594be57c
BLAKE2b-256 7d75dafde25ee87b86d76f94dd6070e310cb5bc53182a0f8d2efc3cc0a8d4f3c

See more details on using hashes here.

File details

Details for the file irspack-0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 578.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1200a4c54811bb8b1a2f8e544920d5f4e3f0aaecddb43144ca0dced92ab7f4a
MD5 aef666d29f41df0099316bfe059fbb79
BLAKE2b-256 a6bec85475c9ab92a2c3da1caf7c77374f02eff1a7334080c5f2bd8d58e16458

See more details on using hashes here.

File details

Details for the file irspack-0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 474.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fd3655080541d90134978124048753ed8141bf76ef8b90e04e43da210311fefc
MD5 f5f113741bbbcab581a1261afd1028bf
BLAKE2b-256 87e46b990b8660fd5f4f26a2ec4fa747e39e13566c4afb4c8c5ccb6cb4a97a74

See more details on using hashes here.

File details

Details for the file irspack-0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 431.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b52bb0ca0c592ffab8a4f4fc35036afdc46600c23ef65c02c25e8cd5071d427d
MD5 9b93e5e1202759ef1f51809928d538a3
BLAKE2b-256 e1e66d9eeb411e09804202b1e14a35eb674099e31902e33d0eb41b690fe62ee0

See more details on using hashes here.

File details

Details for the file irspack-0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 04e890af940e822eaaf73e3480ab8407ce23d5d022fe977d20dadfdf387791c5
MD5 c47ef04d4e3c375ec5f3b48bc73cef19
BLAKE2b-256 1c526c0b2a78be09cce10f5ca5125336c8724ce681f2ecafdd3b8e1c37a3224e

See more details on using hashes here.

File details

Details for the file irspack-0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b492a5c856f95e2c723d08d05d267e367ecf094c05f80cb79bf7a8867ef81eec
MD5 2e8b2ca4942aaa20b46ed4c762875356
BLAKE2b-256 a3a2acf67bfe003d9b5bc8c04e67de631c769b526c271f66cfe37ba938b6e1d9

See more details on using hashes here.

File details

Details for the file irspack-0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 572.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d35bb146e7005857a3878eb3630c417518c1254dabe9330a15f2e4a9525f1476
MD5 ccfa7cece09df47e9f291ca763c667ca
BLAKE2b-256 92e45051842ac269ad0085cf9e4fdf4b7c25343b442c0cca3a8504dc8e1d7dba

See more details on using hashes here.

File details

Details for the file irspack-0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 474.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8b1de8526be9713f04ef78982e79024038486ef8187f578a72f729328971267d
MD5 a49f58775653413899b5e21c9fe9d43f
BLAKE2b-256 11ffc1748d5e266c36e986ec0d430bf8fa1096ba6b913cbfb4e81d32c77c0024

See more details on using hashes here.

File details

Details for the file irspack-0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 431.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 dcd45b85a60ee2e66054932d1b1cf51c15d6259b8c1161ad81fbd9355f55408d
MD5 0b15edf393a4abb0af19f2d8fa552202
BLAKE2b-256 a7c2ddbf6e75214ae6a4f04f59b412e28d117cb31d6b92e778ed43303c3b7419

See more details on using hashes here.

File details

Details for the file irspack-0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5782334f47dfa84ef7341cfd91fc3423dad89175f273fe8e2fe4c70afdc6f01c
MD5 6e900eff5a54159937005586a9d40055
BLAKE2b-256 bfcc2f1c779c7ff86e17a11baf7e727c0583fbb07de5629a5aeac3d3570e069d

See more details on using hashes here.

File details

Details for the file irspack-0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0088e5a0f754adb13144416b9e8fc3321f586c2099eb385b280c0cec251bfe24
MD5 ade35b7649f33f37b97baffa21bae24a
BLAKE2b-256 f93dfe16b3ba6f887cc64a1842a750f1e61d7e8f57c38b2295c220236d7c8aad

See more details on using hashes here.

File details

Details for the file irspack-0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 572.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6408d1447a61118561dfb16d1aec13c4c47d217caffb86e8cca0018bc55c2862
MD5 3a64c81d2f56cf593c007c4a4a574822
BLAKE2b-256 55c4ae04ee14df83ca537830b05b9a6c129b7b22926e7e02e382cc3e855d941b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page