Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs.ndcg.max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.12.tar.gz (136.0 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.12-cp39-cp39-win_amd64.whl (500.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.12-cp39-cp39-win32.whl (451.4 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.12-cp39-cp39-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.12-cp39-cp39-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.12-cp39-cp39-macosx_10_9_x86_64.whl (625.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.12-cp38-cp38-win_amd64.whl (503.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.12-cp38-cp38-win32.whl (450.8 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.12-cp38-cp38-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.12-cp38-cp38-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.12-cp38-cp38-macosx_10_9_x86_64.whl (625.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.12-cp37-cp37m-win_amd64.whl (506.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.12-cp37-cp37m-win32.whl (454.2 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.12-cp37-cp37m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.12-cp37-cp37m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl (620.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.12-cp36-cp36m-win_amd64.whl (506.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.12-cp36-cp36m-win32.whl (454.1 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.12-cp36-cp36m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.12-cp36-cp36m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.12-cp36-cp36m-macosx_10_9_x86_64.whl (620.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.12.tar.gz.

File metadata

  • Download URL: irspack-0.1.12.tar.gz
  • Upload date:
  • Size: 136.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12.tar.gz
Algorithm Hash digest
SHA256 168f696276ea7844f02b2ef54eeeaaec9e56b393f1aec25bb915559c163e0da5
MD5 0263cdcc18a1bb4278a9a3d4848c05ec
BLAKE2b-256 2c16fc9e6b3f53b22bd4cd539c50e418997c42233318f4eac4e3076941057211

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 500.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 170f3586b80880340a213afa6ce02afbc4a0a51adf9c717448f6e6de3768e491
MD5 8c4167c5dd7e227dc93bea1b3ea67233
BLAKE2b-256 c6a5a90f0d92aa054188cc39033e0281f7ef11820d5301b9b3de83e9e97477c2

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.12-cp39-cp39-win32.whl
  • Upload date:
  • Size: 451.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ea0ddc2b4ca93448c3662cedf72310b98dfd55a27885d549dcabe2c1519f471f
MD5 398df9083b55e18eaa1853b0525b2dfd
BLAKE2b-256 856d9f88c0553d5115a68bb8d0c9f72b5f36d9512e0181863271c33c775c891f

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fa4ddf93b8ee02617145a43ca70d988d516584a556a132f77707e4ea5682e39f
MD5 e345efaa016238dbbf7a53e063278b52
BLAKE2b-256 29670d2e47c2722f2ae86d8d3e62fc8603b09db14be734c3a39efa4be5dfa177

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.12-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8465fec80a43dcffff97c9d45dc07780869ae78c7f189c48afd71b1503917fb1
MD5 cfa9b761a464ffb29fc9aa97e23667fc
BLAKE2b-256 6898c3b3a76691c8d159062abe39ac659771397a0476a89e57d9ec99e737c651

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 625.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da294c79e8d30e4ebdbda94eca6c72b27f0488ec906fddb979d24628b1320dad
MD5 bae764c8091c08533ba463542b125415
BLAKE2b-256 5421b4eef1f2e8fc24b5466e06b8d65963c64ee4a2c9d6c1d69296eaaca31d4a

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 503.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c02a7050c282c0391a934576f7355ec7a77bd85d0235b6da38b0e832298add5e
MD5 90e8bf560b29fc6560d8890419e57672
BLAKE2b-256 ef1a1dc2df3e53c1b3caba7ae74f736b2d9ba80ccca565f32abf0935820a20fd

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.12-cp38-cp38-win32.whl
  • Upload date:
  • Size: 450.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c7116f6f8cd0cec13d38adfa103e5899486d1241b84a302aa7e53dbfa1b1db39
MD5 db51e1cf21d5b2ed74738a22553289b3
BLAKE2b-256 ff70322f1074c90df72a0b912933b600a8e79e2ec15900ccc7ecc9482e63fe93

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7071709712d06b6818a6fc666f1d41240d8ee532561680aa0b655a4b7e6f10c3
MD5 510b819fbeba923724294344e62be51b
BLAKE2b-256 a86ee47d3c0c6684f901635006f3ff950b6d0d2ab793092dd1a0cb6b5678763a

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.12-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 77bd7c9fe3810dda6c4a7ab59c80ddba4548f400034f2c5388571b4a93fe223d
MD5 22a47947389a11cc7145874bc472ff5a
BLAKE2b-256 902d34107c8e94ad3d725280420ea8cb7744054c678c50ce81ef9a4957adc448

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 625.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 960cc7b672abf9c6bedc936bd1c1935db84c9325857483771e82ff1ff15843c5
MD5 623b692af616203fb4e8761b2c40a074
BLAKE2b-256 e4586b7a3d21664cfeb6eb41254366f1f752556d371753f59a33eb0b180b5393

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 506.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d3e2c546490988eb38b6b8dc9457a56c8e5c4f13b649cc12cfa3ee2f55a2527b
MD5 a1b3eacbca20658da9f7c7ccee5c38c9
BLAKE2b-256 d467569ebb4ab316aee290fb10935ba5eececaf16fc04cb8a8844db9e866f8da

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.12-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 454.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 acb86dc49e56175aaacd757783306d8042246f35b602db8f9446178849e713a1
MD5 0dcca3523a9d5f7c4a3533e5c4f0dbb7
BLAKE2b-256 404f54f32aca54076a856e0d0eafac803bd6a81b7d9af2f19ef6ce79f1243cb1

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 18bbe6f5b144a1df0d95bc94c41d5c2f894c289fe7adb810546d47752ae94b84
MD5 2a5a2710e580fc04b9ca8a78b2391af5
BLAKE2b-256 3ecd00bd3be905ae9c10fc2d0cb8e980ba307222d595c5bab965a21c288cef49

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.12-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9ee148cc28e6a23500c6d25a83ae9c2021a6a558370e29b499504d1b1bfc648b
MD5 7e65bf6090ecaf47925800d6ceaae5ab
BLAKE2b-256 119ebfb41dd26b7aec0871233a644ebe2c9d7d055c75801a0bb8a696f12ab4ff

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 620.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dabb67db3c57382af0878a67932b514cbbd5507d36712dd5757324e53d0cb78f
MD5 bca7389431e2354bc990702f9d29fb57
BLAKE2b-256 a356491b157f03d2c3d5fc37899bfddc9d2912321cff9b9c5ebd26e1e3238706

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 506.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 548a3a0e2313de57cf12a24c048acb2f7214fb15bed4b3fb4c2e7e72a5d7dbf1
MD5 0a90c221be5c6d4a0bdaa3594af79391
BLAKE2b-256 292215a47fe83db78f490eeb49bc00a15d362edc129a680aadf4c41a1154b39c

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.12-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 454.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 352640c7a36d4b7a6b919b040d34a7c965b2e2cafee787ad26f03de6b4afd1fb
MD5 e85e72b4b938ff468f3cf8f59544cdc3
BLAKE2b-256 efcd13e91a4b9697eb660801c0e9ef4d679716904ea5be1d1869f5d81e5035f7

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 568f7269d399168518c19210c636c1593a90b824f05e3adf9d8b08cb88298b4e
MD5 dae5dc948b6128d36f1e15bf2920a563
BLAKE2b-256 38d8d2e66bba9d05254c8c5c1b3f6903a39e3b8c927cf92f1de4372ea8adfd48

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.12-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fbb63320d6dbd85b3215d00c8b13ee64cd26492c97b7abcd9a1f5508820ce853
MD5 c00652579a9f71a7d8dd4aa132078a29
BLAKE2b-256 0e04e225a3d3dd58cac21c199de0080a51bbc69344fdf7470eab6fec11f4c68e

See more details on using hashes here.

File details

Details for the file irspack-0.1.12-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.12-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 620.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for irspack-0.1.12-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7a246f3756fca7ad6b9c1496bc3e7fae2d9b06ce2b85a2b3eaee14adfcfb554
MD5 70c22c665a3935de8e6c60fbb1522ef3
BLAKE2b-256 412505f7c6c6fb1dd3cc2817d61ccab48ab5c901a1bfc89738e1c4e492db0bed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page