Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs["ndcg@10"].max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.14.tar.gz (142.7 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.14-cp39-cp39-win_amd64.whl (506.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.14-cp39-cp39-win32.whl (457.4 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.14-cp39-cp39-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.14-cp39-cp39-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.14-cp39-cp39-macosx_10_9_x86_64.whl (631.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.14-cp38-cp38-win_amd64.whl (509.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.14-cp38-cp38-win32.whl (456.8 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.14-cp38-cp38-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.14-cp38-cp38-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.14-cp38-cp38-macosx_10_9_x86_64.whl (631.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.14-cp37-cp37m-win_amd64.whl (512.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.14-cp37-cp37m-win32.whl (460.2 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.14-cp37-cp37m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.14-cp37-cp37m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.14-cp37-cp37m-macosx_10_9_x86_64.whl (626.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.14-cp36-cp36m-win_amd64.whl (512.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.14-cp36-cp36m-win32.whl (460.1 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.14-cp36-cp36m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.14-cp36-cp36m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.14-cp36-cp36m-macosx_10_9_x86_64.whl (626.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.14.tar.gz.

File metadata

  • Download URL: irspack-0.1.14.tar.gz
  • Upload date:
  • Size: 142.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14.tar.gz
Algorithm Hash digest
SHA256 4c77f395988d527bfe457fc869439d2770ce4053acead4486a0ca0a80704ea3d
MD5 6e75016c4e47e56b243f364190b660e1
BLAKE2b-256 8140f3a18bc7f4345b8dc21e2f5e0bdf2b562151bbd7f3f9004571e3d621dc21

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 506.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b63913ae51ad9969d7919cdef7ad9a00336c3b8d7f35107b1e0e9f326ef8ff89
MD5 76de230e20116ccf57c8b289ae87060d
BLAKE2b-256 27ea0508ac3a3af963fdbdeb72af575617c3295bcd4dba04c6e1ff357ad4f711

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.14-cp39-cp39-win32.whl
  • Upload date:
  • Size: 457.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9bc921a4d148f4b6cea5afde078b9bfd53413013b49d24d62d45746b7ece4ba2
MD5 e6c7fa975fd564de9b976066c39b2a35
BLAKE2b-256 9b1ee135909b9638739444091f49b67aa4b1c7a478f15c830c51443d46fb19c4

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d35706943f0bf892efa6de0c6a37f26794ac55dadc0b762e565d7ebaf880eca0
MD5 c9ada140eede12416692b5af98bf8002
BLAKE2b-256 27fb91170ac3509693ef09cc2564a8d7f1f14d4b1ff9b6dcc78c0cbf0fe29d7e

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.14-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 325d39010b4d409c0caf996908745d38ec5c3b2053dc1996b62fdc8b033c03a9
MD5 16363180060ecb81527779a689e92d36
BLAKE2b-256 90734b08b759b96c39c2d4aa7167a721dff0c06523328941978c9cff9f79cbab

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 631.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9d5a81a0fc61bfba75b0283115f67ae8c116aa225724f5d291ef236a7c85309
MD5 3e9947714c579471e41345a829184c69
BLAKE2b-256 ef0b0a704d5e65d701eb2730077fbacdfba446b2c66a9ca37f390fb46e7e9ea7

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 509.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6999cf7d51141e60435c87d9bf729be4cba006525e122bf846900a1d8d40f066
MD5 e9aa9663e585304949dce0a5b3e211d5
BLAKE2b-256 68c71139f9f05cc856b2eb705942727b8d824ec7cddc60d163191e928e59c6d9

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.14-cp38-cp38-win32.whl
  • Upload date:
  • Size: 456.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5513656ecf9ad7f5aa3256929981cde1d310e656860cf1388abb6e0d356b35af
MD5 5c303d0a8cdf2dc8dbd8b8509618f5df
BLAKE2b-256 081e0b7bbf2e029e7372b0d69a9864b9b49a173c644aa61c8ab98499fd1dc570

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b92d3a9e1944f10e9d4399a6ed06f3dad17e97e8c3dd9d86a9ac7f56709c0f6
MD5 2a7fa25d78adebdf9701818deccfab81
BLAKE2b-256 00440f60a72511a705cc332543d47a1c0a7ecf208dfe830a3e44caa82d637469

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.14-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8a591e803575eb00da42f9dbd1c0c39680d9ff791173f71ad29507648d7b1735
MD5 530df20f0e124f479ba847baa67dafaf
BLAKE2b-256 3b0ace90650126223a8f9eed5b11a1ba9ced2b3c7dd2174f26f76b1f054e676a

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 631.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d21f02fd8ac0da01d05a9de19550cfef7ef68d8f1fa24a82dcd44ac861dedb1c
MD5 fbfcdcbb225a9fb6b35d07deb3d5512c
BLAKE2b-256 c482e3f2aa41a4adb70cd8f0b3e32edbcc5282c0fa44c9a53eaa536e7640f13d

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 512.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 085254ab478effeb8c388d252e38874e0549379c0860d508f35a28b9d95d8667
MD5 b14870870c3e62e036c5fa63196dab96
BLAKE2b-256 f236c6a32824f86e97a1e13390a184190d2f29ecdcf4598901bff0c92392f472

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.14-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 460.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 bf6ce0be68976ce961c597a0721aaf9bd4122f06ccb2fb4396b35960540748aa
MD5 ebf51f7a0de4ec315efb985065736da1
BLAKE2b-256 6036926d3457766ff453aeee1d29eba375baf1d7aaacddad0c1d9faf3f4f18f1

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 302468e69cbd5a11cae1a14991e8151bf86e6021b0639bf6cb03509f097d7c1e
MD5 b803c98a49da5a224abfc3cedb7df2e2
BLAKE2b-256 c9653921031e2b1947479bcc3922c7b95f6af3376a7de939cd81ef58f2e8959e

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.14-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b09d79a13ac09ba1b550aa5c8b37d999f43612bbe4bc4a7d3cb4ee119cae783d
MD5 57ef7c1d69521e60bfe4f461b7b7cf98
BLAKE2b-256 a7e35ee741dddd51f3366c259d09a1f961b34f3ad9e95601843105a85983ca1c

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 626.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c9eeb91df66552de8ee4be99c8f90e76b094f635ef9e8eef322240923d1e7cd
MD5 ffb7f89eafee771abb347cf7e94841c1
BLAKE2b-256 ac222011d73a7e57f6c8b407650a1a08911a639ef3e1a37e29bbba8bb9770114

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 512.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 eed0258032400a950479940d4371063827ba11446cabf4e473b122be9b2b5dc4
MD5 7a71299d7fd99171470b9a8b350d99d6
BLAKE2b-256 63e9bf3b7b69b7cd2940de3d5aa40c8bfbe2f1724beb3b242e1ad5ca69f00d79

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.14-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 460.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c052210e27923a6e98d376a15b4f396c470894475447de11e57ccc7b3138c44a
MD5 bd743da5ead62dd00ac19fc4c3d23f40
BLAKE2b-256 aefbf37e4436da7e1a4c2451d39599af4b41e6375d5a159d6b5ad8a4dc8e26e3

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e65549fbade8e19a6ab581f76fc845dad96d2d8656fce74d49c398282995f3ad
MD5 afc0fad000333a8b9dd154dac8aa832e
BLAKE2b-256 eedcdfc52c4d5125b77b955193b1e348a2d23c734b5d1165083f73d05159fb23

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.14-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6590f1913267fbe3fc67edd372bf6e3795f280eef28d0e510442d15a330c7044
MD5 cf66f115aa0189c75201283f87e1c68f
BLAKE2b-256 e203554638da30330e9f6b0187ad18c6e9877ec906206e559e831aa540bdd680

See more details on using hashes here.

File details

Details for the file irspack-0.1.14-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.14-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 626.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.14-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54297bd73742355fe9efed7fa848136b90157fd89283f94abe544f19b8c7e985
MD5 d1548a2ba6833b86ad9754177f58edfa
BLAKE2b-256 ec77e69690c89b638733ecf0bc710a3ec92b3a819a4eeb8a99972c0ed7472bcc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page