Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs["ndcg@10"].max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.15.tar.gz (143.6 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.15-cp39-cp39-win_amd64.whl (507.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.15-cp39-cp39-win32.whl (458.5 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.15-cp39-cp39-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.15-cp39-cp39-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.15-cp39-cp39-macosx_10_9_x86_64.whl (632.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.15-cp38-cp38-win_amd64.whl (510.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.15-cp38-cp38-win32.whl (457.9 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.15-cp38-cp38-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.15-cp38-cp38-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.15-cp38-cp38-macosx_10_9_x86_64.whl (632.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.15-cp37-cp37m-win_amd64.whl (513.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.15-cp37-cp37m-win32.whl (461.2 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.15-cp37-cp37m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.15-cp37-cp37m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.15-cp37-cp37m-macosx_10_9_x86_64.whl (627.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.15-cp36-cp36m-win_amd64.whl (513.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.15-cp36-cp36m-win32.whl (461.2 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.15-cp36-cp36m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.15-cp36-cp36m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.15-cp36-cp36m-macosx_10_9_x86_64.whl (627.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.15.tar.gz.

File metadata

  • Download URL: irspack-0.1.15.tar.gz
  • Upload date:
  • Size: 143.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15.tar.gz
Algorithm Hash digest
SHA256 76c2d998aadd23316ce624eb629ed68894330ac6ea0b59fd65f9fae583e25a8a
MD5 01bab00702e3492d503b0c7efaa47d81
BLAKE2b-256 922dbc485ebb4ce1eda147b2b219ec52d13c7ce37d4c81ff821bac988030e65c

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 507.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d513076a6680a633f083d4857c2c720bec698988be9c5f0f869007ffa06e30f4
MD5 9c32d8b708d780d8c01e9ccc0ac932b3
BLAKE2b-256 94007ab47676154687de79028e2a6437d29377cd2e95a8d78bf1b93ac5adebf6

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.15-cp39-cp39-win32.whl
  • Upload date:
  • Size: 458.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e930cb3c79e5427c77a95b0533d258945f6db2548fadd1dfe33d8cba25c27609
MD5 22c211ac33c894a484e2dfd21832bdee
BLAKE2b-256 72db100bde143150807c26d62eba1ecf85efa7d9a583a41aa39b8964531da651

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 62c9425f02e52b0dae2ef50203edf3d7f4aaa1972b142d2d87116e922ed9478e
MD5 0d7227d594b46d875a68fdd9b55d3a8d
BLAKE2b-256 34670780fa2d5d681f2c7c50da1bcd32d585897e39c48c1def04df62758ef36b

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.15-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 060e5d7e04d4a02eefec7f5072368b63f6336c07033cd40fc2b91db6bafb44bb
MD5 a0a2298d933dd5c710394e43cd99fd43
BLAKE2b-256 02cb427a189d23776b517221ade98cb62bd20736abffc4b0a11a1f1c5d023c65

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 632.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 32d39ea8ea5cc5a1d5a044fe44e39f55a100bdfda921d7e924edf81324b4df42
MD5 83ad96c3f7b352be51a1206f84fc59d9
BLAKE2b-256 5f1d4b971da6f2841f29052fc039ab5fc861b9c41d1e906c9cd2147b11f79bb0

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 510.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d7d6cf4739776c0eedd5688c7299fe7eb4bd1e7339b247d3739ce9ecd86c7698
MD5 cef58993cfaa19773a1946e5b59f8408
BLAKE2b-256 0c825eef10f0dba419f27c111adb1112bc987721e5a27d17b27923ae96b68fc4

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.15-cp38-cp38-win32.whl
  • Upload date:
  • Size: 457.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bb43c728997b0e61f7fad55bab0621e8e01b19fc79fb40e31ee29f33d82d33fe
MD5 b9b5513042b9ac91f2b3ca7c518f61d7
BLAKE2b-256 68766642acfa4ad7686f4067ff660f1dc032adf3ff2497ccff642ddae3d44510

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2acc9e48c4d1f71a7eeefcb1502f6c5cf65881377913878aeef8c46099ffb56f
MD5 d9a37ff9990ece299c2c7c5fed187c5b
BLAKE2b-256 da0a18b9ebc0d4054210da60b2983efd1d92423383b6d4b7c136c55fad118b13

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.15-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a4860ee4025518196725b726b1e5badd4d8c09e1172221bf7007d4f41704e332
MD5 a44e981b8e170effd6a0b3d64af0d8c5
BLAKE2b-256 869d072ff4f3162a44039d8355a864792fb0a4d5c9f4dc4dc0fef514fc5f9e73

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 632.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ddd2bdce9b0d5aa401a8392f74bf85b82b9e314e2dbc37cbae163675e2b74ae9
MD5 0d49ba41e71572332d003d21961d9ae0
BLAKE2b-256 9a721d8789a7d5c3b556ad698b553880658a70287325c900920e0d34e2b5c45b

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 513.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a383c7020bea14c6d9f1b9fd81de0b80cba0d4d3641b746bf57c7c6bb2b778f4
MD5 f5d3b7cc7d168590419551b1e9e18ea5
BLAKE2b-256 30c8d7fd83fb5e055720c62aa279ff7b8e21956833eb49e1dbcbef22c1295194

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.15-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 461.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7b36c9c4fbb03d174c70b87010ec78fbb118d83b259443bfcae5ad9fdcfc44f7
MD5 04513d7b6267b3939a9ae024fc0699fe
BLAKE2b-256 8100a7631bde013b39b9d36876d01bd62b62c69a7ba096d296f0a9fb5eac76ac

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6df3857a3e8dac55a8fb39af7135851228633fdf0c8bd69672c4f8b178b95eea
MD5 91273e66c4cf2d49ace18113a35d2bc7
BLAKE2b-256 34eddd3e5cb4ce29352df6143fa77c23b2ca3fdadc6242c498480d1d57c87cdc

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.15-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9939f3d8983b7aa4a2218b513f56861df073a7c8a66c73a77f88a2b627edb54b
MD5 15c97c815dba5dba965390fe261a0c99
BLAKE2b-256 a7a2054336bc11bebafe2831eefa8e33f1d67e0b5e857c4d0ecf729371d36395

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 627.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60d54051971767939eef77134edf769c400d175678e4ac2647ea317c7f3b6b4d
MD5 1914e20751954d9c4e7106b280a3ebb0
BLAKE2b-256 5599982f7d8168cdf9052688c4acc01b74de2b935f78192509ea4d65af1d0d83

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 513.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 668ec58a43a42099629c745b10a485c4e342b26dbdad2fe4122ba8ea58218001
MD5 8dd27969d9d2729e5f7278c520e7ee30
BLAKE2b-256 016dcd864240b6e6a011bd729a6c2097e0614239a5d70a36686c0dbe5379a263

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.15-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 461.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f58d062a8183e1f1069307ebb8ab93c606e35556987871ddcf9f5a2f47fb24dd
MD5 428b270e207277682b00e8e3f6cdc30d
BLAKE2b-256 12446d0a494afce7821c256ee871391acc4d97bdf22ac2e5eae7715853162e40

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0351f5eca454bd30c4c1c8a37395377fb0a760024323a7d779e031ddcc127dbf
MD5 d5ab4499718c2069f6ed9fe3127a0c50
BLAKE2b-256 2aa5eaccb7f232470c12b924a0330af7d56e9719f1d2d47ae095a198f8b88075

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.15-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 234339958fa9432f1171507ac52bbe4663d37b2b6952256bed92c472d69a26d9
MD5 a80faa27f08736325ab013b4697783f9
BLAKE2b-256 d6e9a4c3cbb6914dfb38ae1f1a42603417c9bdd692ae678011f1c6e94f3a88e8

See more details on using hashes here.

File details

Details for the file irspack-0.1.15-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.15-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 627.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.15-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0aa2f5c3693a6583f5a0e709a5a5ba26b08e8bd671970546426b1e28749ec557
MD5 f03e5d49be9805ef7178495abb450540
BLAKE2b-256 ca29cc7515e78d518a0148344b95a78b1e5d931db87cd05a6c9c5bcd6119408d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page