Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs["ndcg@10"].max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.16.tar.gz (143.7 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.16-cp39-cp39-win_amd64.whl (507.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.16-cp39-cp39-win32.whl (458.6 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.16-cp39-cp39-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.16-cp39-cp39-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.16-cp39-cp39-macosx_10_9_x86_64.whl (633.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.16-cp38-cp38-win_amd64.whl (511.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.16-cp38-cp38-win32.whl (458.1 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.16-cp38-cp38-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.16-cp38-cp38-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.16-cp38-cp38-macosx_10_9_x86_64.whl (632.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.16-cp37-cp37m-win_amd64.whl (513.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.16-cp37-cp37m-win32.whl (461.4 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.16-cp37-cp37m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.16-cp37-cp37m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.16-cp37-cp37m-macosx_10_9_x86_64.whl (627.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.16-cp36-cp36m-win_amd64.whl (513.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.16-cp36-cp36m-win32.whl (461.3 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.16-cp36-cp36m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.16-cp36-cp36m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.16-cp36-cp36m-macosx_10_9_x86_64.whl (627.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.16.tar.gz.

File metadata

  • Download URL: irspack-0.1.16.tar.gz
  • Upload date:
  • Size: 143.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16.tar.gz
Algorithm Hash digest
SHA256 80b8189be92e276251300d307244a00316832099878d44fbc9d53a2f085929d1
MD5 30fd3388db2aeccc2926e2bcd280e3f0
BLAKE2b-256 1fe5d5e0758102deb7776b1c8c5182a11fd8d8bd1776355a44bc8020a20832e7

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 507.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3d84801d07d47cfc83e55894180710eda142d3050ed3ac191ec28693f3df2285
MD5 5101fee44538f143c220d3ed448b0f9d
BLAKE2b-256 95a6769d0ef1b16cf6634ca249e0cab91e6ef03c4086ad0636b0edbcd11bbf39

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.16-cp39-cp39-win32.whl
  • Upload date:
  • Size: 458.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 27b706d7d00655d4ea8709bea978265a5a1ca0972d5ba7a575f1855ece758f55
MD5 7c53a296dfecbabc0e3ed9c7d2db4424
BLAKE2b-256 3943b534c6b9798e100d4a511c0ed8e471fb2e77d9b813f057737d54fa2f902e

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bd42c8a28203e5d17ebbc041025eda37d101173688abef38211d2729a64b2745
MD5 09e79efe5c281ddbaf25ffe13ca67feb
BLAKE2b-256 3aebcbe326c9f74529a056b2e44bcde18380188ffa94573eb9df21854c5e9402

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.16-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d06e29dcae365cbbfe69238bd6f94ddf58f927bf358e7164655ccf3e1cb2f858
MD5 202e38dce6f0500781f6d1a76e6fdb81
BLAKE2b-256 fb5f76fa871cc65070768f66e7c913fa65e21b0a569f50ffdbfec1907de341ca

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 633.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8bef803b564cfaeaf0daf9278164ddb8803b2483449d6e5371981c0a075912d
MD5 a4e877c35be86e5b90aa8d33f480a5cb
BLAKE2b-256 7994c79ec1ed19f5c5468f9bc68466045a437a89c0735c1eef809a51c9fc97cf

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 511.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 17abec0594b64f6c52ac9d4546fe7a5fadb5a0dc0ca5d260c80c752f44f7c7bf
MD5 ff81de574d31557434374ac964d02b9f
BLAKE2b-256 5fe04a146717fbb6bff3af080a276a34c722fc6c4718f67ad8c3bd40bf07c08c

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.16-cp38-cp38-win32.whl
  • Upload date:
  • Size: 458.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2d8f851adafe6e8f75ce1935ee37736afafd1de59ec914093c782d1144bf38f9
MD5 4648d432db3ceeea4df35a2203dc0cd6
BLAKE2b-256 15a0bbc41205f44634cf337aa67e9241d694e0897c61dc3fbad0d3708f3d5266

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 29344000b07163c4a32e271e6cb528b3e262f522029ae84d48f8e5936eadc9ac
MD5 868285bd0f9ce930b38383220e9c961a
BLAKE2b-256 0b329fbbeb0c20a60bcac439a4462d58d21533980087493682f227ffd59ebe22

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.16-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a7097ee72dea2edd7809ad6d077a6712137d4b581931492dc3bde5576eb29c68
MD5 32fc2317c1ab4184d462b4ef4a85a132
BLAKE2b-256 7e6d67d16659e32cde1df688dcde665cac49c6121295371044199a85e70ea3da

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 632.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45cacbfe4368348b51d2657648cefc5d41bc512e15b441b9cfd0601812bc9389
MD5 3a100e28321c83aa17c31c6237f53e0d
BLAKE2b-256 080226353c1e3cef69831f8d8d00d017b6cd3b1ab073bcb1767a12a69f630188

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 513.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 605ba9fef825328c1c15f59b5fda843700620799f8c122b4a380cd691e3ac619
MD5 5b5c560d65cc676ac368f6847bd061c6
BLAKE2b-256 5e0c580d62a1e071e8aaf35a9bc32e461b025f188560138d0aef142099c662dd

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.16-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 461.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 461ec01b4d7e97b21c37c4728c25860674c1944ad7916d03ac9e5c42ac8e1abc
MD5 5140e27c623b065ba9e40832b5ad0c4e
BLAKE2b-256 f8f9cd80d28963905192402a5a5321ccb32a14c975efde06000d033ec167403d

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f8311d4772ec4892fe34eae56e64113f687eeeaf9f9dbc1ff00b1b7b28ce42f
MD5 f20235694e5aa94d063ae4445d3bb5e1
BLAKE2b-256 df1f4f03fc7baebe8441095f3347c8fdc4c68bfe050c7094336b3b8f6eaaf065

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.16-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 78e301ee3825fb566ee906b2c6b925af07ad1cf74e3e8ac94ffeae6dbb771fdb
MD5 915feb14b4aff9968cd1e5d7010bcd49
BLAKE2b-256 7d73c8aab6c8e1ee263cacf27ca8a2ba723ae4c604177d03b4294b37284dd996

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 627.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9981b811d0b0a78b2ba99589e152d44ffd4ed36f483aefeb88dd1bd433aa699
MD5 5089b3a267c7f45bd8f7e5d963a7e727
BLAKE2b-256 2491647c0887e5b08e2f41d8f491ecd47ca116ce440b40b7ba601db69274387d

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 513.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2177d7de33dfe1a230acb613142639951ab46d4d8e4fb09a6a451c2afc36c62b
MD5 4d9835f116db8fae3f53627b7a04e2c6
BLAKE2b-256 1cd9f68bdd11bb274986cec6956bd02057ee6fb88618701aa3774ff20362e011

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.16-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 461.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 45a1aa8214cfcbe729f185e36833ab14cab8e18067ff6435b9df1191fca13277
MD5 daf0cb82883fd433549789dd5b46fddc
BLAKE2b-256 801d3635db83ff7caa53682c15582f7ecee294fe4a84c467d92776da75552d44

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ab4ddc665b0abdc6928ffdf826e069cd43be49b7a6b9c8ebfbc2f5e1abdfb2ba
MD5 b7d5f36e32ffe9d6a3bdbd36475112d5
BLAKE2b-256 792aa1accab37888551d0c216639eb3c65aaf23cd7b46e26abc4ebb03513fc61

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.16-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4c8a665e26809e0bee65aed703ebf986c62269b7afaf7bad816d7e075c89a49b
MD5 f1b6c27b3e0f79324aa65235a3c40d64
BLAKE2b-256 fdfbf07173c0e994f44aa984616bfa9338f8273ffd983d9586a0495977a8ebe9

See more details on using hashes here.

File details

Details for the file irspack-0.1.16-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.16-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 627.6 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.16-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b7655698e6b533fb4c42691b0083d58eccdc3a46dc3298e07c94e8ee92dfa1d
MD5 446e6866c98d9a1856ce461f0e095914
BLAKE2b-256 c3c7d2a51520fe5e3f2c5c2ee61abfe52a714116c9a362b390581aa8c6f1c178

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page