Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs["ndcg@10"].max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.17.tar.gz (144.6 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.17-cp39-cp39-win_amd64.whl (530.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.17-cp39-cp39-win32.whl (474.5 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.17-cp39-cp39-manylinux2010_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.17-cp39-cp39-manylinux2010_i686.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.17-cp39-cp39-macosx_10_9_x86_64.whl (648.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.17-cp38-cp38-win_amd64.whl (534.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.17-cp38-cp38-win32.whl (474.3 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.17-cp38-cp38-manylinux2010_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.17-cp38-cp38-manylinux2010_i686.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.17-cp38-cp38-macosx_10_9_x86_64.whl (647.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.17-cp37-cp37m-win_amd64.whl (536.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.17-cp37-cp37m-win32.whl (477.6 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.17-cp37-cp37m-manylinux2010_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.17-cp37-cp37m-manylinux2010_i686.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.17-cp37-cp37m-macosx_10_9_x86_64.whl (642.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.17-cp36-cp36m-win_amd64.whl (536.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.17-cp36-cp36m-win32.whl (477.5 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.17-cp36-cp36m-manylinux2010_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.17-cp36-cp36m-manylinux2010_i686.whl (9.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.17-cp36-cp36m-macosx_10_9_x86_64.whl (642.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.17.tar.gz.

File metadata

  • Download URL: irspack-0.1.17.tar.gz
  • Upload date:
  • Size: 144.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17.tar.gz
Algorithm Hash digest
SHA256 ba5de4458f4af3ff71a9868142539445308a1dae913938cd0f92ef96448df176
MD5 c65156111d8801e555a7cc3941183a36
BLAKE2b-256 a29d186f4a454def52138c003139be824a212b56b4293d20b5cb50a1c47a4f5b

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 530.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9dcddeab5220f099b8e3459ab6a6ff60e51dc37542e6af9525a37881c511ee65
MD5 fca1076f5f23f4bb7ce70ea94c12384a
BLAKE2b-256 dd7ba4e382b35fb32bcd2764849d4f3de7ca19d677fc3d764bf3b25c0da474f7

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.17-cp39-cp39-win32.whl
  • Upload date:
  • Size: 474.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fad9aaaf9c83315c873a0039dcf7f7a9cecbc873761e65fffa6bf1d1643be68c
MD5 5f9e0ae8265f4ba9dca287adabe2a4d9
BLAKE2b-256 498431bdd040a301e9df89b478527083dd768fdf909dadd137bde2a8201283ab

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 39e730a201e3da157ab5385ab6adf7300073c42de1fe7493d0ac4b578165d424
MD5 0467864882e362811abc2810ad84392f
BLAKE2b-256 32a7c503be4aa5d385bfb9c8575f4fea45ca92d635c2bd2fc974b5d166498e08

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.17-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 73a03b399bd02b71217067c04e07cfd9ffe0df20620582424a29207b62115211
MD5 9176d4483e4d045234f20bfdb81717b2
BLAKE2b-256 fcb074a34f0a0beb36c8e5c102ca48d6cbb02e93cd0469e0a2515a68baf8cee5

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 648.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 632f55c8a3b6e66be5ab34de75cacc5b45bae0c5b9eea3920068985d892f1342
MD5 8c9b5f46cc6a601aa05df59d6018be5b
BLAKE2b-256 4e95141385f20b9f808060e8cb3e878b8fdd60af390e3ef7c0966b2303316923

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 534.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c88dd13d0507aa7469986c8ad5d1c7dd1081e8add51e3871d2f644fe76c1a3fa
MD5 8dce44416ed4d3906a6f910eb9f74ca0
BLAKE2b-256 cdac76e0f32ca9d01440457110347a7b1a48104b1c532febe54abee9fd88fa54

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.17-cp38-cp38-win32.whl
  • Upload date:
  • Size: 474.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0d83a4569610d47ef1a3f49dcfe348b62900e3da47bff6378f9b223ad438763b
MD5 53638b9a0bd81bd59e7a32d7b303cc98
BLAKE2b-256 bdadbb6e77c6875162ef2c57ffe2c1ae93ea79186d26a77210bb3851bf6aaf9c

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a49428a2ee84b7059b5703c353b32cdfc614c0ddd24591a7229bc27848eec96a
MD5 91d61eb8bd5f6edb648fd169be8cdfc9
BLAKE2b-256 868d680d3f1e170686a60dc45a81892a3d433e1a379f6c1243a8697cb587b822

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.17-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fb5fb09483869c62c14776b13df84abd30937bf0f7d06f7e460e2b15fb6cbee6
MD5 2bbeaaa17fcbdf73bbc2dea0ed3c6988
BLAKE2b-256 c4916d8a8c93069b94de3c6bd4ed13c581439192676e1b37125a9ac9461959d4

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 647.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 282b8f15582f1beb8d1fe1c738dfb779228ae8c46e5db1bda7fa3bf7e8620d88
MD5 002dfe50306809567837aa1413d30510
BLAKE2b-256 44f4892e3006bcb6f1a9db9b6b1460e3a2afdd371fa8846b2bac48cd2bea1cee

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 536.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b8394e8c5f13219f9c0857f3bf315b499785cd97d603b0f7d58d89cbe21f3276
MD5 4f8f844ab3e85db38da3dde3dc219960
BLAKE2b-256 f352e9ce180a32cf7d591f02ca1f782f963c5ad4cd29b7f6325fea329ffeed0e

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.17-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 477.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a865d84af8a56bf16ab6a7d0d4e4b46716e597354015e51c384955f3fdeb4c82
MD5 a1dd39f095b40132caf0dc8a3efbacae
BLAKE2b-256 93e09c42e6f012ea1523d9567ce640492f2ce27a9a72084cf55f259e54b2b74d

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d274ea929f9cbae5f5b08d081837d7c8d5eac64a9f6116931cbd9256e63a5ef8
MD5 089bca38cfc25f826278c1456c052b20
BLAKE2b-256 903bb3fc75d2afe2b34648cddd528a64dbbc5cd78252985ba700543d19adb334

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.17-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 55c610ddccee2ebd01a05f37f9f4faafb577d9d962cd5f2e61a5af1a84bc89dd
MD5 978b4338d255f85e32b4bf5488dae1fb
BLAKE2b-256 5663bcd5ee068191dad6aa523fc699e46b78c6a3b025181fb83488703e646ed4

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 642.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5840ef5ab272923f1db1a3c57c5ab1f0ee1ead7be18882bb8c6818e449b30d0
MD5 5e454d8f6dd66f5d9bfc77834f1f0e29
BLAKE2b-256 6556fa38bb0753a350f54bf37e79748ff443e4ec8ab9e9aaa08248589e58f268

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 536.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fc5623ed027820be6e0c95e2113fe585884f593c761bece706e022bc6d0a6e23
MD5 67c0034d7147a4b99525f07f1cd21a56
BLAKE2b-256 4f686e5427ab30efbeace6021e5d76a02bb3a4f84a111d790a9ade1b2592674c

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.17-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 477.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e65084d7ea26e3bb3c93c78ffe1718851873c57f1cda0799c15885e8328011b5
MD5 af7e8601e7423c231adc60c108aa117c
BLAKE2b-256 07f4653e2c7dde6974318e8900227c49483fbc9c42b0ddcb0dbda0b3927347a8

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 22fc02eab8bbc221e96a41076bfc4124dc7905e4bc78367f3b149c5887631c9f
MD5 542b9639bbedd0507a38c87ff62af42b
BLAKE2b-256 6d6531159e16c7aff3e819287bc3eb5cb3c05d71b0b0fbf06162de4720d049c8

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.17-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0868b145daff9e6a6d60f24df6f21437051c28ee0eac3c85e1a53f7e42346263
MD5 8a76074554a1de1386684fd496049538
BLAKE2b-256 39ef3d28d9125eab7027d693e30abed38f6502db9224f7dd304b6309eb59450b

See more details on using hashes here.

File details

Details for the file irspack-0.1.17-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.17-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 642.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.17-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2fe559367b79dfd6672b05cc56eee6b54ff337df9492423902b285015343d20
MD5 6df536303ecee455c1c2697b5ef61e4c
BLAKE2b-256 d844be1d3bc2b5013ac8741d6edbd0ffd8ce824a2734b0087c29a493f7adbf42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page