Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations of the number of algorithms (KNN and IALS) in C++.
  • Deal with user cold-start scenarios using "CB2CF" strategy, which I found very convenient in practice.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX, install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support).

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train and optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

# often, X_val is defined for a subset of users.
# `offset` specifies where the validated user blocks begin.
# In this split, X_val is defined for the same users as X_train,
# so offset = 0
evaluator = Evaluator(ground_truth=X_val, offset=0)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs.ndcg.max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • complete documentation
  • more splitting schemes
  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.5.tar.gz (126.6 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.5-cp39-cp39-win_amd64.whl (471.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.5-cp39-cp39-win32.whl (428.9 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.5-cp39-cp39-manylinux2010_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.5-cp39-cp39-manylinux2010_i686.whl (8.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.5-cp39-cp39-macosx_10_9_x86_64.whl (578.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.5-cp38-cp38-win_amd64.whl (471.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.5-cp38-cp38-win32.whl (428.4 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.5-cp38-cp38-manylinux2010_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.5-cp38-cp38-manylinux2010_i686.whl (8.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.5-cp38-cp38-macosx_10_9_x86_64.whl (578.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.5-cp37-cp37m-win_amd64.whl (474.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.5-cp37-cp37m-win32.whl (431.5 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.5-cp37-cp37m-manylinux2010_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.5-cp37-cp37m-manylinux2010_i686.whl (8.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.5-cp37-cp37m-macosx_10_9_x86_64.whl (572.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.5-cp36-cp36m-win_amd64.whl (474.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.5-cp36-cp36m-win32.whl (431.4 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.5-cp36-cp36m-manylinux2010_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.5-cp36-cp36m-manylinux2010_i686.whl (8.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.5-cp36-cp36m-macosx_10_9_x86_64.whl (572.8 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.5.tar.gz.

File metadata

  • Download URL: irspack-0.1.5.tar.gz
  • Upload date:
  • Size: 126.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5.tar.gz
Algorithm Hash digest
SHA256 58e634d584dfaf6dce598b77a280ad4eb6a33acd4314bb7d26f83c99b4e477fe
MD5 af9f6859b16e96fe9421d9a7bd8c3544
BLAKE2b-256 123377927b94d49735018f62b07b3c0be517ad77723b02d7f1cf304bbef1e0cd

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 471.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ee6f9fb2d5690612eb61bbc930c65cb1c26ce0a6a2742157acd8e10725913e67
MD5 d8808ffb5ecc8ed2ee24dc28c2020816
BLAKE2b-256 1a9792bc44a0901bf2a841b94188b225e9bac11dff37aa2d1bf14eabebdf45d1

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 428.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 07ccca1fa96b6d8944accd9fd36b74d1b667c96a3fa8b556664d0778e1108fe3
MD5 1678dbfbdb8330befbae022e4c080287
BLAKE2b-256 54df831ca9bffbda2909a1a31307b6d343f06544b6686c49352cfc11bf70ab1e

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3ce1567c127f6a15ea9b9bb55c75f93efdf7c931d53d3f48306e7fe6f036711f
MD5 5453bb723e9fbea692f6369efc38529d
BLAKE2b-256 da9d9a562f47d80df863880d9715fdac2db88c6823c4009fbfa7e1c1a0e640a7

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.5-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4c3b3ad04fc7803e233f5b2213c841c7ebc5028f784f94129ebb73d5cacdf445
MD5 eda589b7512d1bd39fa15008ac3bec75
BLAKE2b-256 db076a51ed847338ae1d7fbb7cf3343b9b377a0bfb6c0ce70e6b7aa447dea87d

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 578.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33b5711f41d22a34ce6a8ca717ad9ae3e076ebe7d23bd5cd2744734613e166f7
MD5 92d7db0d90f955cd1c84ae06fce6cebc
BLAKE2b-256 a5a498c30522d06612ce597dfa4359e6ab5734bcb862c745851c5a855a3c2834

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 471.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e05eae7edc45ba43833beb1eeed4377d24e2466ab4ad952ac82692a1cf955911
MD5 e81c06cff6043eb4b665292978d129a6
BLAKE2b-256 be089b56b5b37867ceb2d0b274d493c14cae6d6aa0a39eca96b5cee1aab60f47

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 428.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 57d688449b6ca529edcca70a228c750cfdaf22e28fcf8436572577faf44efe3e
MD5 f0a97afbbdbd2f6b8ede2812b5c42708
BLAKE2b-256 66fda9c4b8429cc7673b20bbedea4aaf16bdd71c72ecd1bd903dfa4c5b45736a

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dfaa7013a8e9f033059b5c87c6503fd31e8e36b90b6c389bc88a286265ca3e89
MD5 484e9f48c364715329bb07ad5fce1ce4
BLAKE2b-256 57f5d0333ed00fc5b91993ac9747352ae3deba49a7c628283cf0ab3d784baf34

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.5-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2cebe7c4a0fae3cf8d627a0641b82d7026b37ce0254b006913bb7d16cac8ea72
MD5 717a4d370242ab02a091a89b6c5d6c5c
BLAKE2b-256 a1ac78a91bd655bda75306e46a1fe12e73f0263b8c7a5d55f149ac02fd49d19c

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 578.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4031cd178806bccbcae71d3288981736e969871adde6b9a81b688e277ae18dbc
MD5 3aa44047b65057b79328a208dc5deebb
BLAKE2b-256 2c0e179ed38dc44709640e007c25d408d5710248d122953cd1bfe6428373c302

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 474.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f6e26ff68a184e0be82708c526ad6d73066100f00fb8d3d01e2a16b32b22f9a6
MD5 cbb4624c5f1e6ad5b07b8815706e8902
BLAKE2b-256 e26b377e717fb1be8a8610e3002afc60e4c4059e5af0fa2e22dd0767aad0a030

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 431.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5f1a03d659b0b9f0707b6ad6699eec46898788303d5249da821dffb7ecc1016c
MD5 dd22ea79b7fb22260f38dfcfba8e521e
BLAKE2b-256 924845156d1682868e48e6d98ef9ceebfa2f0188989734ffefa0b4aedacf3ef1

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 49ca577f106f3dc926711e31d941353879839fa67f520aed4bac6d26feab2133
MD5 53b2f7fac36f38fa43ff37270e844cb6
BLAKE2b-256 e2613883d105a2fc9faae8d7494f5b8cf069c42c08d97f58b7714fd84bea11c7

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.5-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 86de791d4fefe6f142accdfd1cddcb01fe524f4d7758dd4972f6ae5a55eab6a6
MD5 f79c643029bd5e3f0be732dd6d5848c6
BLAKE2b-256 42eb36962acd83f35cd8963b887045058103a6c80c48d89197428d7dace998d1

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 572.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf5e29d99df6832a41aec18c0bdd9de379ba1d0fbfdfc44206130fac55238d28
MD5 cee9e985c551867e8deae3b2373cb1f6
BLAKE2b-256 bd0d617ce3cefa8b8bc846d1d44a8ff633f17b13667ff00773ea0f790f6f5a95

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 474.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 75e31de6e6e4cec1f8efa9e4e5164e893a8c033aaf56c448b9ec9c1c85a63a29
MD5 b6d66c5f5d2861f5e99b877b1d1a0e9d
BLAKE2b-256 8fdc2eee4c3bbee0cfd1b7df25284b20a69498cc96a2b590a96f63f425c44055

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.5-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 431.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 5787b851bb8c6720fd17fb86390b7ce38600b53bea64b8b8bf07b26778768ab0
MD5 4a480da8c2eb73eac77ec5e3743d5d0f
BLAKE2b-256 68359b2b3a3d08756857b74204824248e1e7e435d5a354785108fa9c8ef61468

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f9420c2261b97bbe4c24909b0c41baf8e018f68368d857fb941774abba67cbef
MD5 36b768249d6c92cfdbeee718a7b8cc11
BLAKE2b-256 a78826f7bda73ab77421a9532d5045e2e98be562c17db470a5311b257402c91f

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.5-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3baddcfe3cda36efd33a967d1b8b2a97989e86632cad793a068d32e9039c0c9e
MD5 251e843bc653d24349b8d80cde4ec9aa
BLAKE2b-256 5f8aec3cb085078bca5c0082ca8a497c6504a586d64ccac4b2dbc5b327695fbb

See more details on using hashes here.

File details

Details for the file irspack-0.1.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 572.8 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for irspack-0.1.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1cb1e7c439edf71cf2b77db6df2dfbfd927bbf9a973ef7d6fefb8b213cb38ae6
MD5 586264af3d38877e3e2bd9fe5545ef6e
BLAKE2b-256 88101945ded6338fb0c8356e74064b27eb56a70c3c172fa9a2b6441f0da13978

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page