Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.
  • Deal with user cold-start scenarios using "CB2CF" strategy, which I found very convenient in practice.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

# often, X_val is defined for a subset of users.
# `offset` specifies where the validated user blocks begin.
# In this split, X_val is defined for the same users as X_train,
# so offset = 0
evaluator = Evaluator(ground_truth=X_val, offset=0)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs.ndcg.max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • complete documentation
  • more splitting schemes
  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.7.tar.gz (126.7 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.7-cp39-cp39-win_amd64.whl (473.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.7-cp39-cp39-win32.whl (428.0 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.7-cp39-cp39-manylinux2010_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.7-cp39-cp39-manylinux2010_i686.whl (8.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.7-cp39-cp39-macosx_10_9_x86_64.whl (584.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.7-cp38-cp38-win_amd64.whl (476.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.7-cp38-cp38-win32.whl (427.6 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.7-cp38-cp38-manylinux2010_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.7-cp38-cp38-manylinux2010_i686.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.7-cp38-cp38-macosx_10_9_x86_64.whl (583.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.7-cp37-cp37m-win_amd64.whl (479.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.7-cp37-cp37m-win32.whl (430.1 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.7-cp37-cp37m-manylinux2010_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.7-cp37-cp37m-manylinux2010_i686.whl (8.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl (578.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.7-cp36-cp36m-win_amd64.whl (479.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.7-cp36-cp36m-win32.whl (430.1 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.7-cp36-cp36m-manylinux2010_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.7-cp36-cp36m-manylinux2010_i686.whl (8.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.7.tar.gz.

File metadata

  • Download URL: irspack-0.1.7.tar.gz
  • Upload date:
  • Size: 126.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7.tar.gz
Algorithm Hash digest
SHA256 4aa47736f159b501f9586f2703013787c3d966a5ef2dc1bb4bf2c5a084a6fcdf
MD5 2b0004f8915a685dfee94a51283c0d2f
BLAKE2b-256 05816ca2fa4a0c000d39ccdefa4fa864fd095c7db438631170982d459958bb82

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 473.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 43e4758ed8642d78bb51d23167d2d28f95a70bdf6d26929233fbc32455617b75
MD5 b76155fabcc7807947aa7382f0033d1b
BLAKE2b-256 7b9a773b4b980d45a7159ffaf9460102450155e31e6d38a40b10403daa201d16

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 428.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2ddede485e74f64dcd6a2bf05a4812f84da4cd279891d5d59f9bcaf80b38084e
MD5 09badacd2c263c7502793506ff5235f4
BLAKE2b-256 497cf932f1d7274f9014a179687d69dd2bf555290c2650c48a805adea8edcfd7

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7193d4aff6759ab3b4c95f2b60667f8ac92253cc04f8329ab4c25e75ed736db8
MD5 6286344255a595662612fddefa43001e
BLAKE2b-256 5178b4b58dbf9d7c1c6aa95cbf51462ab79aa8348695473a564a3d696cbdcb56

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.7-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f959283cb83b262a2dc051d89cd6efefa3874d97ad40e98293e1f067666cbff4
MD5 79197193d0bb865688a9dc47e92827de
BLAKE2b-256 1a49f69898742ab4c86f4f5e34693b6ca3fa7acca85e4f4c3641934ff67bad3d

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 584.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e492b1f32094d824f101c05db2cfe6c35317a1c1783850b7bfab676785a27155
MD5 a30f0beeccdc83549dfa1eb846409349
BLAKE2b-256 e345ae23d72507dbd5c50d880a604663c4ac36953cfb19f01fa62a0404c851b0

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 476.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e5005ccc3ff99d996c9eff5ac3de4f3f761b53bc9df1a9c84f4f7b61964ae809
MD5 95563c0e637088a20628410fe9b45043
BLAKE2b-256 8ffb7b2b01aa25a5cb3677918aea611245b63de4aa4777a22ad45e0aefd5ca7b

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 427.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 22b1a8147042fe70e55b28b3df982205568ba876e8f1a1089c215472a6038dae
MD5 e20cc7cc52801b10fadf10fafbaddb8a
BLAKE2b-256 904c1b0a2ac81b8a560adf620847acadf840f2a344672641eae7a992bc0e9703

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 18deb6daa77bd7f86a195bcaa82a3db8f70b1859f3b5b0108438086817320b9d
MD5 8413d6f7233c25a97ff18e0360cce618
BLAKE2b-256 03c0795bd915a2bf220049fdd2e93886468820bb0246f8a7f98596ea1b0bcad7

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.7-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 67d6d68412143948f90fe5012790caf3b27ecb615ed10e96b788c7a2650bd455
MD5 589f41d1a3576babdcf22a7527980a1a
BLAKE2b-256 3c4d610c51ced0c29b1ab08959300cc39626554bccabb7fe224b0877a9b522a9

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 583.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86b54acd393688831c42b79b127fc7a9fd29b29bd1d5e2e8ddcd33f91500fb38
MD5 98f73c4deaab40c38f9143fd4275c17a
BLAKE2b-256 3215811b6db3f6625e68fc61f384debda5e225f95fa26290728cc6836750adf2

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 479.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 72f27c05b4866c92b4521bc720a1e7fc3a326d5d739eebb41aaddf06ef201878
MD5 1eda00c553959852cbc67b4cc8c0b444
BLAKE2b-256 e970b174d3ee2b89998e7d3f933a801c0fd0be42c3e17684d8ef4d8bd0bfd214

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 430.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 69e41adbe6b7464c2d1d2ea98704e844cb33841baae88cabbbedd5facee837f6
MD5 e2768c65c6f3b9f67bca74ee2eeaba34
BLAKE2b-256 807e1194a07defa4913dbe5c4c8a61e2e09549a711d89a5afeaf53bb3789db32

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ebf769db50401b12628070156f3a2dd962399260809f0f738128c2cc0739f9ad
MD5 4c204a3f788a62b597a4b6a98b3e4782
BLAKE2b-256 123a588d5c2e9c368dff189539e5b4844af84a09967ae6cefa7e340d9811020c

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.7-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 edf25583218d92f387659182fd2b45cccd1768b4722e583fd4104a97ccd08b5e
MD5 dfd4026de47598b119ccc8e1cae5b587
BLAKE2b-256 9b5be5b0518360e47720f5fe81ee24cfa3689365a828aaefaae841575eacc2ef

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 578.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45713f8781ab1b53a1fdb90836cab3880e879ef9d27be4f2601338bc5c42e31e
MD5 40f92a378b1f475ea9ebd6df8a9766da
BLAKE2b-256 4469cdc161fce4ecd58af9080dd734cfb36c748e525234c17720ca5dbcdfc1b5

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 479.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6c5c8abaf8bc0c528820231b1a04c04eff85670cb5070aa3bb3b348bfdbf75af
MD5 de50cce338a63e0c91b84526f9fe8e97
BLAKE2b-256 bbec0fd19a823c7de4e9bc1764477e7bfbf98ee9276b66a90886ed82189ff866

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.7-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 430.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 85de0b0303884e663219f609c7652ca8fe925ea2eeea584ae9b4c6fd1e5b2022
MD5 07256b0b5105035040bf5fe1c485780f
BLAKE2b-256 bab6d3d2c4f7ccbf5867ec5126e74b8a385cb89c4d93a1023fe535514272afed

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7449f9d5d17b577f9db00d2423d6c9c3d567740fb685de611f0f4937aede0b23
MD5 6b42e3d6f8e67086e45fd17cf773beae
BLAKE2b-256 8ed92d04ab9628ba84fdca1eebeff0c45610be2f54d2a23a4675a14dea7022c8

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.7-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aee8f3aabdb88f52a4fd0946ae139b04360005b3932b039451ea8ea6d490a832
MD5 ea79499d412afba6cb3030ae36fd5191
BLAKE2b-256 65bcc20cda0aec8104fdaf132d0eb4a7ac8e248a2e876289ec494f5230be76c1

See more details on using hashes here.

File details

Details for the file irspack-0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 578.6 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a5af7547c85cb40dd895db509b3738f5f651ff92114ddf193d0a3c286d0f06d
MD5 a0e246a5219956bb2b7cc0243dec378a
BLAKE2b-256 2119b6e12d3ad197068e7d6846e253a2becaeeec50a90db1d2a9b6fe22a9f77f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page