Skip to main content

Example package for the iSTAGING Workshop

Project description

Workshop SPARE_SCORES Model Training & Testing

This project involves training and testing a SPARE_SCORES model using the SPARE framework. The provided CLI tool allows users to easily train a model on a given dataset and test it on another dataset.

Table of Contents

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/iSTAGING_Workshop.git
    cd iSTAGING_Workshop
    
  2. Create a virtual environment:

    conda create -n workshop python=3.8
    conda activate workshop
    
  3. Install the dependencies:

    pip install numpy pandas scikit-learn spare-scores
    

Usage

The CLI tool supports both training and testing modes. It can be invoked as follows:

  1. Training:

    python iSTAGING_Workshop/cli.py --action train --input path/to/train_data.csv --output path/to/save_model.pkl.gz
    
  2. Testing:

    python iSTAGING_Workshop/cli.py --action test --input path/to/test_data.csv --model path/to/saved_model.pkl.gz --output path/to/save_results.csv
    

CLI arguments

Required CLI arguments

  • -a, --action: The action to be performed, either train or test.
  • -i, --input: The dataset to be used for training/testing, provided as a CSV file.

Optional Arguments

  • -m, --model, --model_file: The model file to be used for testing. Required for testing.
  • -o, --output: The filename for the model to be saved (if training) or the test results to be saved (if testing).
  • -h, --help: Show the help message and exit.
  • -V, --version: Display the version of the package.

Examples

  1. Training a Model

    To train a model with the provided training dataset:

    python cli.py --action train --input data/train_data.csv --output my_model.pkl.gz
    
  2. Testing a Model

    To test the provided model:

    python cli.py --action test --input test_data.csv --model model/test.pkl.gz --output predictions.csv
    

Contributing

Contributions are welcome! Please fork the repository and submit a pull request with your changes. Check out the CONTRIBUTING.md for more info! Also check out the Code of Conduct of the project.

License

This project is licensed under the CBICA License - see the LICENSE file for details.

References

  • SPARE-AD

    Davatzikos, C., Xu, F., An, Y., Fan, Y. & Resnick, S. M. Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain 132, 2026-2035, doi:10.1093/brain/awp091 (2009).

        @article{davatzikos2009sparead,
            title={Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index},
            author={Davatzikos, Christos and Xu, Feng and An, Yaakov and Fan, Yong and Resnick, Susan M},
            journal={Brain},
            volume={132},
            pages={2026--2035},
            year={2009},
            publisher={Oxford University Press},
            doi={10.1093/brain/awp091}
        }
    
  • SPARE-BA

    Habes, M. et al. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns. Transl Psychiatry 6, e775, doi:10.1038/tp.2016.39 (2016).

        @article{habes2016spareba,
        title={Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns},
        author={Habes, Mollie and others},
        journal={Translational Psychiatry},
        volume={6},
        pages={e775},
        year={2016},
        publisher={Nature Publishing Group},
        doi={10.1038/tp.2016.39}
        }
    
  • diSPARE-AD

    Hwang, G. et al. Disentangling Alzheimer's disease neurodegeneration from typical brain ageing using machine learning. Brain Commun 4, fcac117, doi:10.1093/braincomms/fcac117 (2022).

          @article{hwang2022disparead,
          title={Disentangling Alzheimer's disease neurodegeneration from typical brain ageing using machine learning},
          author={Hwang, Gabriel and others},
          journal={Brain Communications},
          volume={4},
          pages={fcac117},
          year={2022},
          publisher={Oxford University Press},
          doi={10.1093/braincomms/fcac117}
          }
    

Disclaimer

  • The software has been designed for research purposes only and has neither been reviewed nor approved for clinical use by the Food and Drug Administration (FDA) or by any other federal/state agency.

Contact

For more information and support, please contact aidinisg@pennmedicine.upenn.edu.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

istaging_workshop-0.1.1.tar.gz (817.5 kB view details)

Uploaded Source

Built Distribution

iSTAGING_Workshop-0.1.1-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file istaging_workshop-0.1.1.tar.gz.

File metadata

  • Download URL: istaging_workshop-0.1.1.tar.gz
  • Upload date:
  • Size: 817.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.19

File hashes

Hashes for istaging_workshop-0.1.1.tar.gz
Algorithm Hash digest
SHA256 fed996edf16e01ac0e455637daf8d4f7a91b8d0576eca8979e638bd5ef190518
MD5 0123ed2b1d2fc35df1e90f383d6f3cc4
BLAKE2b-256 d398fd36176c19fd11b7e5eed7f1c770efbae55da9ab54483248ab15a1fcd52b

See more details on using hashes here.

File details

Details for the file iSTAGING_Workshop-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for iSTAGING_Workshop-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e26c1d9d73412c495e15360a69e44488ab5695be8b95f283da49678044532662
MD5 5b9441d0c78a40ce7b14a6944aaae0ff
BLAKE2b-256 158ffc59c71b96ae3edf97f8a23523ab555165ec76ffbb2937f99a2adf9492d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page