Skip to main content

Auto-differentiable and hardware-accelerated force density method

Project description

JAX FDM

build DOI PyPI - Latest Release PyPI - Python Version

A differentiable, hardware-accelerated framework for inverse form-finding in structural design.

Crafted with care in the Form-Finding Lab at Princeton University ❤️🇺🇸

JAX FDM enables the solution of inverse form-finding problems for discrete force networks using the force density method (FDM) and gradient-based optimization. It streamlines the integration of form-finding simulations into deep learning models for machine learning research.

Key features

  • Legendary form-finding solver. JAX FDM computes static equilibrium states for discrete force networks with the force density method (FDM), the time-tested form-finding solver backed up by over 50 years of peer-reviewed research 📚.
  • Derivatives, JIT compilation and parallelization. JAX FDM is written in JAX, a library for high-performance numerical computing and machine learning research, and it thus inherits many of JAX's perks: calculate derivatives, parallelize, and just-in-time (JIT) compile entire form-finding simulations written in Python code, and run them on a CPU, a GPU, or a TPU 🤯.
  • Autotune those force densities, loads and supports. A form-found structure should fulfill additional design requirements to become a feasible structure. Formulate an inverse form-finding scenario like this as an optimization problem with JAX FDM. Then, let one of its gradient-based optimizers solve the problem by automatically tweaking the network's force densities, applied loads and support positions 🕺🏻.
  • A rich bank of goals, constraints and loss functions. No two structures are alike. JAX FDM allows you to model a custom inverse form-finding problem with its (growing!) collection of goals, constraints, and loss functions via a simple, object-oriented API. The available goals and constraints in the framework are granular and applicable to an entire network; to a subset of its nodes, edges, and combinations thereof 💡.
  • Form-finding simulations as another layer in a neural network. As an auto-differentiable library, JAX FDM can be seamlessly added as a layer in a differentiable function approximator like a neural network that can be then trained end-to-end. Let the neural network learn the underlying physics of static equilibrium directly from the form-finding simulation, instead of resorting to laborious techniques like data augmentation 🤖.

JAX FDM is a research project under development. Expect sharp edges and possibly some API breaking changes as we continue to support a broader set of features.

Installation

First, create a new Anaconda environment and then activate it:

conda create -n jaxenv
conda activate jaxenv

Next, install COMPAS and COMPAS VIEW2 via conda:

conda install -c conda-forge compas compas_view2==0.7.0 

Finally, install JAX FDM with a one-liner via pip:

pip install jax-fdm

JAX FDM requires Python 3.7+, JAX 0.3.17+, Numpy 1.23.3+, Scipy 1.9.1+, and COMPAS 1.16.0+. For visualization, it uses COMPAS_VIEW2 0.7.0.

Are you a Windows user?

JAX is only officially supported on Linux (Ubuntu 16.04 or later) and macOS (10.12 or later) platforms. This is the case with JAX FDM too. Consequently, installing JAX FDM on Windows may require a different approach from that given by the instructions listed above.

One working alternative for Windows users is to install JAX and JAX FDM using the Windows build for JAX. Note that this is a community build that has been reported to work only on Windows 11. Another option to install JAX on Windows is to do so via the Windows Subsystem for Linux, with the limitation of having marginal graphical output. Please refer to JAX's installation instructions for other alternatives to install JAX on Windows.

Documentation

Work in progress! Expect a release soon.

Quick example

Suppose you are interested in generating a form in static equilibrium for a 10-meter span arch subjected to vertical point loads of 0.3 kN. The arch has to be a compression-only structure. You model the arch as a jax_fdm network (download the arch json file here). Then, you apply a force density of -1 to all of its edges, and compute the required shape with the force density method.

from jax_fdm.datastructures import FDNetwork
from jax_fdm.equilibrium import fdm


network = FDNetwork.from_json("data/json/arch.json")
network.edges_forcedensities(q=-1.0)
network.nodes_supports(keys=[node for node in network.nodes() if network.is_leaf(node)])
network.nodes_loads([0.0, 0.0, -0.3])

f_network = fdm(network)

You now wish to find a new form for this arch that minimizes the total Maxwell's load path, while keeping the length of the arch segments between 0.75 and 1 meters. You solve this constrained form-finding problem with the SLSQP gradient-based optimizer.

from jax_fdm.equilibrium import constrained_fdm
from jax_fdm.optimization import SLSQP
from jax_fdm.constraints import EdgeLengthConstraint
from jax_fdm.goals import NetworkLoadPathGoal
from jax_fdm.losses import PredictionError
from jax_fdm.losses import Loss


loss = Loss(PredictionError(goals=[NetworkLoadPathGoal()]))
constraints = [EdgeLengthConstraint(edge, 0.75, 1.0) for edge in network.edges()]
optimizer = SLSQP()

c_network = constrained_fdm(network, optimizer, loss, constraints=constraints)

You finally visualize the unconstrained form-found arch f_network (gray) and the constrained one, c_network (in teal) with the Viewer.

from jax_fdm.visualization import Viewer


viewer = Viewer(width=1600, height=900)
viewer.add(c_network)
viewer.add(f_network, as_wireframe=True)
viewer.show()

The constrained form is shallower than the unconstrained one as a result of the optimization process. The length of the arch segments also varies within the prescribe bounds to minimize the load path: segments are the longest where the arch's internal forces are lower (1.0 meter, at the appex); and conversely, the segments are shorter where the arch's internal forces are higher (0.75 m, at the base).

More examples

Notebooks

These notebooks run directly from your browser without having to install anything locally!

Scripts

These python scripts require a local installation of JAX FDM.

  • Pointy dome: Control the tilt and the coarse width of a brick dome.
  • Triple-branching saddle: Design the distribution of thrusts at the supports of a monkey saddle network while constraining the edge lengths.
  • Saddle bridge: Create a crease in the middle of the bridge while constraining to transversal edges of the network to a target plane.

Citation

If you found this library to be useful in academic or industry work, please consider 1) starring the project on Github, and 2) citing it:

@inproceedings{pastrana_jaxfdm_2023,
               title={{JAX}~{FDM}: A differentiable solver for inverse form-finding},
               author={Rafael Pastrana and Deniz Oktay and Ryan P. Adams and Sigrid Adriaenssens},
               booktitle={ICML 2023 Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators},
               year={2023},
               url={https://openreview.net/forum?id=Uu9OPgh24d}}
@software{pastrana_jaxfdm_software_2023,
          title={{JAX~FDM}: {A}uto-differentiable and hardware-accelerated force density method},
          author={Rafael Pastrana and Deniz Oktay and Ryan P. Adams and Sigrid Adriaenssens},
          year={2023},
          doi={10.5281/zenodo.7258292},
          url={https://github.com/arpastrana/jax\_fdm}}

Acknowledgements

This work has been supported by the U.S. National Science Foundation under grant OAC-2118201 and the Institute for Data Driven Dynamical Design.

See also

COMPAS CEM: Inverse design of 3D trusses with the combinatorial equilibrium modeling (CEM) framework.

JAX CEM: The combinatorial equilibrium modeling (CEM) framework in JAX.

JAX: Composable transformations of Python+NumPy programs.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jax_fdm-0.8.3.tar.gz (71.4 kB view details)

Uploaded Source

Built Distribution

jax_fdm-0.8.3-py2.py3-none-any.whl (91.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jax_fdm-0.8.3.tar.gz.

File metadata

  • Download URL: jax_fdm-0.8.3.tar.gz
  • Upload date:
  • Size: 71.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for jax_fdm-0.8.3.tar.gz
Algorithm Hash digest
SHA256 43701296f5c1cd5b7d161a1a856f82a32de4ab1bb4f8da2edf8932c8a0186e09
MD5 e50f8ddf29e94c70f799af4d9274aac5
BLAKE2b-256 fb999fdfd5c09aae149aba1ce77d83f6de7fef881387a7b76289e45ed18abecb

See more details on using hashes here.

File details

Details for the file jax_fdm-0.8.3-py2.py3-none-any.whl.

File metadata

  • Download URL: jax_fdm-0.8.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 91.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for jax_fdm-0.8.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 483a1fce786e106fdfa7bf630263431e18ad17a53d9b904771e9c76191a7fab5
MD5 4148a5b5d855ebab71a379b59f7440bf
BLAKE2b-256 f5a97affba81f231bb41c81e49e6239ec28104322b251f0102cef450c0751c10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page