JAX + OpenAI Triton integration
Project description
jax-triton
The jax-triton
repository contains integrations between JAX and Triton.
Documentation can be found here.
This is not an officially supported Google product.
Quickstart
The main function of interest is jax_triton.triton_call
for applying Triton
functions to JAX arrays, including inside jax.jit
-compiled functions. For
example, we can define a kernel from the Triton
tutorial:
import triton
import triton.language as tl
@triton.jit
def add_kernel(
x_ptr,
y_ptr,
length,
output_ptr,
block_size: tl.constexpr,
):
"""Adds two vectors."""
pid = tl.program_id(axis=0)
block_start = pid * block_size
offsets = block_start + tl.arange(0, block_size)
mask = offsets < length
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
output = x + y
tl.store(output_ptr + offsets, output, mask=mask)
Then we can apply it to JAX arrays using jax_triton.triton_call
:
import jax
import jax.numpy as jnp
import jax_triton as jt
def add(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray:
out_shape = jax.ShapeDtypeStruct(shape=x.shape, dtype=x.dtype)
block_size = 8
return jt.triton_call(
x,
y,
x.size,
kernel=add_kernel,
out_shape=out_shape,
grid=(x.size // block_size,),
block_size=block_size)
x_val = jnp.arange(8)
y_val = jnp.arange(8, 16)
print(add(x_val, y_val))
print(jax.jit(add)(x_val, y_val))
See the examples directory, especially fused_attention.py and the fused attention ipynb.
Installation
$ pip install jax-triton
You can either use a stable release of triton
or a nightly release.
Make sure you have a CUDA-compatible jax
installed. For example you could run:
$ pip install "jax[cuda12]"
Development
To develop jax-triton
, you can clone the repo with:
$ git clone https://github.com/jax-ml/jax-triton.git
and do an editable install with:
$ cd jax-triton
$ pip install -e .
To run the jax-triton
tests, you'll need pytest
:
$ pip install pytest
$ pytest tests/
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file jax_triton-0.2.0.tar.gz
.
File metadata
- Download URL: jax_triton-0.2.0.tar.gz
- Upload date:
- Size: 62.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed564a5ffb9e404557dc8d296e7eb30e501da5a4d7b03408acd0837c1c618c21 |
|
MD5 | 34eb181dc13b85e0d9cd9fb43a64093b |
|
BLAKE2b-256 | 25c68e695bc3e3c3e4be47a9a90b215ab57ebb61b3d3295f287829fdb1206361 |
File details
Details for the file jax_triton-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: jax_triton-0.2.0-py3-none-any.whl
- Upload date:
- Size: 27.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6db5f6147327f2462c35becab612d415cf9ee70c96e43020c3c7ea873eb8576e |
|
MD5 | acb871f67693a6020f1e427cf879ec00 |
|
BLAKE2b-256 | f6eb44b69fb10a97d921c4312d7222b0757b5879cf1b6ca0d64815661ed1a533 |