Skip to main content

JAX-based Interatomic Potential

Project description

JAX-based Interatomic Potential

https://img.shields.io/pypi/v/jaxip.svg https://img.shields.io/travis/hghcomphys/jaxip.svg Documentation Status

Description

JAXIP is an optimized Python library on basis of JAX that helps in the development of emerging machine learning interatomic potentials for use in computational physics and chemistry. These potentials are necessary for conducting large-scale molecular dynamics simulations of complex materials at the atomic level with ab initio accuracy.

JAXIP is designed to develop potentials for use in molecular dynamics simulations, rather than a package for performing the simulations themselves.

Documentation: https://jaxip.readthedocs.io.

Main features

  • The design of JAXIP is simple and flexible, which makes it easy to incorporate atomic descriptors and potentials

  • It uses autograd to make defining new descriptors straightforward

  • JAXIP is written purely in Python and optimized with just-in-time (JIT) compilation.

  • It also supports GPU-accelerated computing, which can significantly speed up preprocessing and model training.

Examples

Defining an atomic environment descriptor

The following example shows how to create an array of atomic-centered symmetry functions (ACSF) for a specific element. This descriptor can be applied to a given structure to produce the descriptor values that are required to build machine learning potentials.

from jaxip.datasets import RunnerStructureDataset
from jaxip.descriptors import ACSF
from jaxip.descriptors.acsf import CutoffFunction, G2, G3

# Read atomic structure dataset (e.g. water molecules)
structures = RunnerStructureDataset('input.data')
structure = structures[0]

# Define ACSF descriptor for hydrogen element
descriptor = ACSF(element='H')

# Add radial and angular symmetry functions
cfn = CutoffFunction(r_cutoff=12.0, cutoff_type='tanh')
descriptor.add( G2(cfn, eta=0.5, r_shift=0.0), 'H')
descriptor.add( G3(cfn, eta=0.001, zeta=2.0, lambda0=1.0, r_shift=12.0), 'H', 'O')

# Calculate descriptor values
dsc = descriptor(structure)

Outputs:

>> descriptor
ACSF(element='H', num_symmetry_functions=2, max_r_cutoff=12.0)

>> dsc[:3]
Array([[1.9689146e-03, 3.3253896e+00],
       [1.9877951e-03, 3.5034575e+00],
       [1.5204106e-03, 3.5458338e+00]], dtype=float32)

The gradient of the defined descriptor can be obtained for an atom using the grad method.

>> descriptor.grad(structure, atom_index=0)
Array([[-0.04337483,  0.22992024, -0.04233539],
       [-0.07089673,  0.03088031, -0.16785064]], dtype=float32)

Training a machine learning potential

This example illustrates how to quickly create a high-dimensional neural network potential (HDNNP) instance from an in input setting files and train it on input structures. The trained potential can then be used to evaluate the energy and force components for new structures.

from jaxip.datasets import RunnerStructureDataset
from jaxip.potentials import NeuralNetworkPotential

# Atomic data
structures = RunnerStructureDataset("input.data")
structure = structures[0]

# Potential
nnp = NeuralNetworkPotential.create_from("input.nn")

# Descriptor
nnp.fit_scaler(structures)
#nnp.load_scaler()

# Train
nnp.fit_model(structures)
#nnp.load_model()

# Predict the total energy and force components
total_energy = nnp(structure)
force = nnp.compute_force(structure)

Outputs:

>> nnp
NeuralNetworkPotential(atomic_potential={'C': AtomicPotential(
        descriptor=ACSF(element='C', num_symmetry_functions=30, r_cutoff_max=12.0),
        scaler=DescriptorScaler(scale_type='center', scale_min=0.0, scale_max=1.0),
        model=NeuralNetworkModel(hidden_layers=((15, 'tanh'), (15, 'tanh'))),
)})

>> total_energy
Array(-8.16754983, dtype=float64)

>> force
{'C': Array([[-4.1423317e-02, -1.7819289e-02,  6.5731630e-03],
             [-5.2372105e-03,  1.3765628e-03, -1.5538651e-05],
             [-5.7118265e-03,  6.4179506e-03,  3.0147154e-02],
             ...], dtype=float32)}

License

This project is licensed under the GNU General Public License (GPL) version 3 - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

jaxip-0.5.2-py2.py3-none-any.whl (58.8 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page