Skip to main content

Compute Natural Breaks (Fisher-Jenks algorithm)

Project description

Jenkspy: Fast Fisher-Jenks breaks for Python

Compute "natural breaks" (Fisher-Jenks algorithm) on list / tuple / array / numpy.ndarray of integers/floats.

The algorithm implemented by this library is also sometimes referred to as Fisher-Jenks algorithm, Jenks Optimisation Method or Fisher exact optimization method. This is a deterministic method to calculate the optimal class boundaries.

Intended compatibility: CPython 3.7+

Wheels are provided via PyPI for Windows / MacOS / Linux users - Also available on conda-forge channel for Anaconda users.

Usage

Two ways of using jenkspy are available:

  • by using the jenks_breaks function which takes as input a list / tuple / array.array / numpy.ndarray of integers or floats and returns a list of values that correspond to the limits of the classes (starting with the minimum value of the series - the lower bound of the first class - and ending with its maximum value - the upper bound of the last class).
>>> import jenkspy
>>> import json

>>> with open('tests/test.json', 'r') as f:
...     # Read some data from a JSON file
...     data = json.loads(f.read())
...
>>> jenkspy.jenks_breaks(data, n_classes=5) # Asking for 5 classes
[0.0028109620325267315, 2.0935479691252112, 4.205495140049607, 6.178148351609707, 8.09175917180255, 9.997982932254672]
# ^                      ^                    ^                 ^                  ^                 ^
# Lower bound            Upper bound          Upper bound       Upper bound        Upper bound       Upper bound
# 1st class              1st class            2nd class         3rd class          4th class         5th class
# (Minimum value)                                                                                    (Maximum value)
  • by using the JenksNaturalBreaks class that is inspired by scikit-learn classes.

The .fit and .group behavior is slightly different from jenks_breaks, by accepting value outside the range of the minimum and maximum value of breaks_, retaining the input size. It means that fit and group will use only the inner_breaks_. All value below the min bound will be included in the first group and all value higher than the max bound will be included in the last group.

>>> from jenkspy import JenksNaturalBreaks

>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

>>> jnb = JenksNaturalBreaks(4) # Asking for 4 clusters

>>> jnb.fit(x) # Create the clusters according to values in 'x'
>>> print(jnb.labels_) # Labels for fitted data
... print(jnb.groups_) # Content of each group
... print(jnb.breaks_) # Break values (including min and max)
... print(jnb.inner_breaks_) # Inner breaks (ie breaks_[1:-1])
[0 0 0 1 1 1 2 2 2 3 3 3]
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7, 8]), array([ 9, 10, 11])]
[0.0, 2.0, 5.0, 8.0, 11.0]
[2.0, 5.0, 8.0]

>>> print(jnb.predict(15)) # Predict the group of a value
3

>>> print(jnb.predict([2.5, 3.5, 6.5])) # Predict the group of several values
[1 1 2]

>>> print(jnb.group([2.5, 3.5, 6.5])) # Group the elements into there groups
[array([], dtype=float64), array([2.5, 3.5]), array([6.5]), array([], dtype=float64)]

Installation

  • From pypi
pip install jenkspy
  • From source
git clone http://github.com/mthh/jenkspy
cd jenkspy/
pip install .
  • For anaconda users
conda install -c conda-forge jenkspy

Requirements

  • Numpy

  • Only for building from source: C compiler, Python C headers, setuptools and Cython.

Motivation:

  • Making a painless installing C extension so it could be used more easily as a dependency in an other package (and so learning how to build wheels using appveyor / travis at first - now it uses GitHub Actions).
  • Getting the break values! (and fast!). No fancy functionality provided, but contributions/forks/etc are welcome.
  • Other python implementations are currently existing but not as fast or not available on PyPi.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jenkspy-0.4.1.tar.gz (191.6 kB view details)

Uploaded Source

Built Distributions

jenkspy-0.4.1-cp312-cp312-win_amd64.whl (224.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

jenkspy-0.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (642.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

jenkspy-0.4.1-cp312-cp312-macosx_11_0_arm64.whl (227.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

jenkspy-0.4.1-cp312-cp312-macosx_10_9_x86_64.whl (234.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

jenkspy-0.4.1-cp311-cp311-win_amd64.whl (224.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

jenkspy-0.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (650.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

jenkspy-0.4.1-cp311-cp311-macosx_11_0_arm64.whl (227.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

jenkspy-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl (233.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

jenkspy-0.4.1-cp310-cp310-win_amd64.whl (224.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

jenkspy-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (611.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

jenkspy-0.4.1-cp310-cp310-macosx_11_0_arm64.whl (227.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

jenkspy-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl (233.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

jenkspy-0.4.1-cp39-cp39-win_amd64.whl (224.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

jenkspy-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (613.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

jenkspy-0.4.1-cp39-cp39-macosx_11_0_arm64.whl (227.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

jenkspy-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl (233.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

jenkspy-0.4.1-cp38-cp38-win_amd64.whl (224.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

jenkspy-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (622.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

jenkspy-0.4.1-cp38-cp38-macosx_11_0_arm64.whl (227.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

jenkspy-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl (233.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

jenkspy-0.4.1-cp37-cp37m-win_amd64.whl (224.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

jenkspy-0.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

jenkspy-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl (233.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file jenkspy-0.4.1.tar.gz.

File metadata

  • Download URL: jenkspy-0.4.1.tar.gz
  • Upload date:
  • Size: 191.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1.tar.gz
Algorithm Hash digest
SHA256 e61e2103bed031cdfac9996604308298bc0a29f8051f09c343d9ce35af32a1f3
MD5 1f0ad7484a1c8069d60073f0c65a07bc
BLAKE2b-256 9195a1aef86df7bb9af295cdda03d218556e2f4524e4d30168b8ee6af88bfa40

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 224.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 eb12ceb98a124d8f1bee6ed438e0e3d63e126459865834af6dac5aaf9bdcc60c
MD5 5908c4c7ae2855c04a708697c967b2be
BLAKE2b-256 b18f90491811e4000bb751b3f9f10bef30ea35969381abfedf1e60d64554ba4e

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 642.0 kB
  • Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 277ce49e82cec01a809e5c9e1c63efac2baca1949d07ece53324bb7451a26cac
MD5 c619c149dac551ab9406cdd519a97f3f
BLAKE2b-256 2ada76455dca608c4a286e9b0253e8f2de9f90951cc52f71098827465c05ab16

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp312-cp312-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 227.9 kB
  • Tags: CPython 3.12, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 988f7261e82fe88770f95d5712bf2663ee73e1630e873ad016588cb1e5234d69
MD5 2cb5c3287cb3b7b9aea458ca0b6b31ff
BLAKE2b-256 efcb74466013039bbce311d16e91764bdcccbbdef1ac4c5794952c16772f3978

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp312-cp312-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 234.2 kB
  • Tags: CPython 3.12, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c49cd705c38acd7e8fb6afd3a998bc0ba754685d9110c239233b30e6da6a769
MD5 22e4399f46b9296f7ce0b338d4c5c9c8
BLAKE2b-256 a1eec4a8af2dd0e63b60d3141683887c0ae79b84cc8bee53832a334744f94d36

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 224.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5b09beca37d1d7bb2b3857394bd046e2aba864f88b085607b89ff4269c2e6ccb
MD5 4f3123a59c51a10783a53bf9604a9cf2
BLAKE2b-256 9e9417b62b9b4d0e143587bad142e7d31c1aa6823f0f10ca42129d2e186ef7ed

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 650.9 kB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b27df244b7377b8cb54c48d887aea94f374d50afa8bd92c96115e88805ca6e12
MD5 7c32024f0c964acfe375e44ffac079b0
BLAKE2b-256 c0b47a3602f0e2251c51618c6c0f6a7d9b6e3bf5110144c2942f834acc07e280

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 227.4 kB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c2fcb61df4bbed3bd924e85f3d6ee2ac9e11572ef135873996750f67cd755116
MD5 78380bdde44edd11d27b7f4c56c6fa2f
BLAKE2b-256 3c6373abdb2a11b0f5cc3e2284835c79174560af499ccf52021a32a1d32517f4

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 233.1 kB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee46e3d92a93fd7c4d3a880fdbc9c2d7e082d4d2316f93012f473bf04d45997f
MD5 14a680787d7d89ab541e3d7ece4a6c43
BLAKE2b-256 82bafb6e076bd017ff9a25bfd0bcf9df98917e2c3ad3e624929714e9dd8955b3

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 224.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5039bddb1465f0ada5c465921628aa9f7fd96cb84cb2fbd1aaf397f0c1e398c1
MD5 4693b1188d97a1d9830c2fc7cc4dd13d
BLAKE2b-256 81e9258e0665fe6a586c0ac33fce78848b1c19b0c5090d8963d42353648be7d6

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 611.3 kB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7bf9b2b9d04239971c01ff862a84bb1b05ef216a1a6723f23a99e411f18a990
MD5 27bef752fe34010bf2640c66577868fc
BLAKE2b-256 90f67509d13884421a6be1351b08cdadec65dab0b09a8590a874b3f983d4bd48

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 227.4 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c3269be0dee8681f3ef51bf0d05e0954d9cb812e004e5124900c2245d20d4c14
MD5 e27dfb00fa16c60d5c676263a2d22bfe
BLAKE2b-256 61b0390b9df76a16db2bfce0cc1b507f8ab24b3350888e1d6a1677a6ae2f0c39

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 233.2 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f13c4247605cdcb9c3a5147172c0a865344ca411b5fee740e05a3e98f2c3af2
MD5 234d2938a293f219abbb58a11e39d115
BLAKE2b-256 bb3ed7bf6684f09d69a0f9bc183ff30523e72e105e5e72f83614ab6eba0d3de7

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 224.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f3c1c7a67e615ecc43c78537d9d341cf6282db0307b19c5d27f3cdb6af26a1bc
MD5 9fec23950bcf06904a05430f24d3aac7
BLAKE2b-256 33be5c40e9299cd936327b8d303e0d7ef1513f198127ded5e1942c5dad7b125e

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 613.8 kB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c409a9f10d5deca571830de0368db721803cd3f20905a9640a42efb9c77ef572
MD5 d2c652d4e05d7300aaf9cb367e7b3e93
BLAKE2b-256 3c21790b5174def7c287c5500cf38d9ced7920b1bd770b9447d82a89c4813e8e

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 227.7 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b932f907f922d2fbccd9326e5a2de352d993bcb5b1b27c9de414467b97632e46
MD5 519c8b81d6052e3eeef58321aa4a526e
BLAKE2b-256 604545bdc3f13c1bdfe33a0695d123b3b166ddb50d83be89f7bf15e13814ed0c

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 233.6 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 562fa39a5b0d57572a0a86672eab3d1f192c334610fb98e8a7bc67521d7ba79d
MD5 b6ccbd32de4dd8dbb97b768dd4bbccec
BLAKE2b-256 690f83c3bfa4df25347aa4114518f3661bfef5227f28986def3f2a02e49517d5

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 224.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5d7b2df0275cfa2c4971b0b76e45d02f1336a44e5ac86339cbcdd1c8bc439317
MD5 57a40ac59b6d96fd1029d15a694829b5
BLAKE2b-256 e0edf6aa1c92c7d29b9d91346071664291c4aba9d82ef85c2b53930976954689

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 622.3 kB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36a336a761f96feee7c0da61f7b35ca34dbfe3796298212e4f678b2549f69f02
MD5 b3679297fc8047fcf8496cdafeded61d
BLAKE2b-256 afe0492055f2747516243aefe92aa92bb5bf9f513cf2789101038ba0107ae2aa

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 227.7 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aad2d881ad24f6be218c73ec77055e66f0bea34c28eb68e516f30541f756ce32
MD5 3caa7651ba318df151ca98b7edfe4fa9
BLAKE2b-256 9283a406c2db7e514e6eac150f73c449d27a7c18c133516753a07588c77a09be

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 233.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6cbcd758c5719d2bd69794be564f2c1f5800befb63923f8df14d09f26b21df82
MD5 5a4340898f7c51f34294fb950bddbebb
BLAKE2b-256 9f4a3a7f6432a98b7b5a318f6aa445ebe0b5d5d16fb26287fe6c50db6dbb1fbd

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 224.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a50cefc866f34482f141b07b892201ed2c59151d18af46b4edad7fc108132700
MD5 dbc8394b10b36b8d4568a8fe64b3d151
BLAKE2b-256 d05b9252601ec0aa2ce487090273e3c44c1e2a5a761564cabd0f473246775ffe

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 583.4 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4636e5decabf4aae7624af669625fcefd29b54d70a8f6bd938ce087a5b64cbc
MD5 3a7be9c8a200f3c421132a4e53f83afc
BLAKE2b-256 f900891c9b6dd7074cf8c6e388130e30ab34d2b27336f5353841b33850e72314

See more details on using hashes here.

File details

Details for the file jenkspy-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: jenkspy-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 233.0 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for jenkspy-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c783dc51b4af9c970303d59c298c3f7d40ddc1d0e8602b165aa7440a52942061
MD5 afe573efd9ce737cfb15a452dd3c02a3
BLAKE2b-256 b612e818048a0a5adacbebfcf24c63c88d73212fc110b022470d2d7d0793d00c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page