Skip to main content

SDK for Hubble API at Jina AI.

Project description

jina-hubble-sdk

PyPI

Install

pip install jina-hubble-sdk

Core functionality

  • Python API and CLI.
  • Authentication and token management.
  • Artifact management.

Python API

Detecting logging status

import hubble
if hubble.is_logged_in():
    print('yeah')
else:
    print('no')

Get a token

Notice that the token you got from this function is always valid. If the token is invalid or expired, the result is None.

import hubble
hubble.get_token()

If you are using inside an interactive environment, i.e. user can input via stdin:

import hubble
hubble.get_token(interactive=True)

Mark a function as login required,

import hubble

@hubble.login_required
def foo():
    pass

Login to Hubble

import hubble

# Open browser automatically and login via 3rd party.
# Token will be saved locally.
hubble.login()

Logout

import hubble

# If there is a valid token locally, 
# this will disable that token and remove it from local config.
hubble.logout()

Authentication and Token Management

After calling hubble.login(), you can use the client with:

import hubble

client = hubble.Client(
    max_retries=None,
    jsonify=True
)
# Get current user information.
response = client.get_user_info()
# Create a new personally access token for longer expiration period.
response = client.create_personal_access_token(
    name='my-pat',
    expiration_days=30
)
# Query all personal access tokens.
response = client.list_personal_access_tokens()

Artifact Management

import hubble
import io

client = hubble.Client(
    max_retries=None,
    jsonify=True
)

# Upload artifact to Hubble Artifact Storage by providing path.
response = client.upload_artifact(
    f='~/Documents/my-model.onnx',
    is_public=False
)

# Upload artifact to Hubble Artifact Storage by providing `io.BytesIO`
response = client.upload_artifact(
    f=io.BytesIO(b"some initial binary data: \x00\x01"),
    is_public=False
)

# Get current artifact information.
response = client.get_artifact_info(id='my-artifact-id')

# Download artifact to local directory.
response = client.download_artifact(
    id='my-artifact-id',
    f='my-local-filepath'
)
# Download artifact as an io.BytesIO object
response = client.download_artifact(
    id='my-artifact-id',
    f=io.BytesIO()
)

# Get list of artifacts.
response = client.list_artifacts(filter={'metaData.foo': 'bar'}, sort={'type': -1})

# Delete the artifact.
response = client.delete_artifact(id='my-artifact-id')

Error Handling

import hubble

client = hubble.Client()

try:
    client.get_user_info()
except hubble.excepts.AuthenticationRequiredError:
    print('Please login first.')
except Exception:
    print('Unknown error')

CLI

Login to Jina Cloud

Open browser automatically and login via 3rd party. Token will be saved locally.

jina auth login

Logout

If there is a valid token locally, this will disable that token and remove it from local config.

jina auth logout

Personal access token (PAT) management

Create a new PAT

jina auth token create <name of PAT> -e <expiration days>

List PATs

jina auth token list

Delete PAT

jina auth token delete <name of PAT>

Development

Local test

  • Make a new virtual env. make env
  • Install dependencies. make init
  • The test should be run in a logged in environment. So need to login to Jina. jina auth login
  • Test locally. make test

Release cycle

  • Each time new commits come into main branch, CD workflow will generate a new release both on GitHub and Pypi.
  • Each time new commits come into alpha branch, CD workflow will generate a new pre-release both on GitHub and Pypi.

FAQ (Frequently Asked Questions)

Run into RuntimeError: asyncio.run() cannot be called from a running event loop in Google Colab?

You could run into a problem when you trying to run these codes in Google Colab

import hubble

hubble.login()

The way to bypass this problem is adding nest_asyncio and use it first.

import hubble
import nest_asyncio

nest_asyncio.apply()
hubble.login()

Support

Join Us

Hubble Python SDK is backed by Jina AI and licensed under Apache-2.0. We are actively hiring AI engineers, solution engineers to build the next neural search ecosystem in opensource.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jina-hubble-sdk-0.19.2.tar.gz (45.3 kB view details)

Uploaded Source

Built Distribution

jina_hubble_sdk-0.19.2-py3-none-any.whl (54.9 kB view details)

Uploaded Python 3

File details

Details for the file jina-hubble-sdk-0.19.2.tar.gz.

File metadata

  • Download URL: jina-hubble-sdk-0.19.2.tar.gz
  • Upload date:
  • Size: 45.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.14

File hashes

Hashes for jina-hubble-sdk-0.19.2.tar.gz
Algorithm Hash digest
SHA256 820c355e5c845aef4585dead526abfaf78aa6471b1c1dd873f56fa1ab29213ff
MD5 740cb007b9d7456c94a7b870b5c21d21
BLAKE2b-256 87605b24619823367f6019cd17b2f8eb0a2587bae538c2d676e647de592b3a7c

See more details on using hashes here.

File details

Details for the file jina_hubble_sdk-0.19.2-py3-none-any.whl.

File metadata

File hashes

Hashes for jina_hubble_sdk-0.19.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4c91ed05e773d52a9b25c612720b434ffec300739e87ece65c8b6d7a51116a9c
MD5 263e63ad3a53797492ac01a7f7d8e3fc
BLAKE2b-256 6a8bcf968ec3ae0b0ef630df7a6b46a3d4cc74fcc9d1c1ad0b20e0a24cab67dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page