Skip to main content

General Purpose Python Library

Project description

joatmon (jack of all trades, master of none)

Documentation Status PyPI version Build Status Coverage Status GitHub license Pylint Python package Upload Python Package

What is included?

As of today, the following algorithms have been implemented:

As of today, the following environments have been implemented:

  • Rubick's Cube
  • 2048 Puzzle
  • Sokoban
  • Game of 15
  • Chess

As of today, the following networks have been implemented:

You can find more information in the doc.

Installation

  • Install joatmon from Pypi (recommended):
pip install joatmon

Install from Github source:

git clone https://github.com/malkoch/joatmon.git
cd joatmon
python setup.py install

Examples

If you want to run the examples, you'll also have to install:

Once you have installed everything, you can try out a simple example:

python examples/sokoban_dqn.py
python examples/sokoban_ddpg.py

How to run the tests

To run the tests locally, you'll first have to install the following dependencies:

pip install pytest pytest-xdist pep8 pytest-pep8 pytest-cov python-coveralls

You can then run all tests using this command:

py.test tests/.

If you want to check if the files conform to the PEP8 style guidelines, run the following command:

py.test --pep8

If you want to check the code coverage, run the following command:

py.test --cov=joatmon tests/

References

  1. Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
  2. Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).
  3. Fujimoto, Scott, Herke van Hoof, and David Meger. "Addressing function approximation error in actor-critic methods." arXiv preprint arXiv:1802.09477 (2018).
  4. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.
  5. Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
  6. Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).
  7. Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." arXiv preprint arXiv:1710.10196 (2017).
  8. He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
  9. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
  10. Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

joatmon-1.0.1rc1.tar.gz (149.3 kB view details)

Uploaded Source

Built Distribution

joatmon-1.0.1rc1-py3-none-any.whl (190.8 kB view details)

Uploaded Python 3

File details

Details for the file joatmon-1.0.1rc1.tar.gz.

File metadata

  • Download URL: joatmon-1.0.1rc1.tar.gz
  • Upload date:
  • Size: 149.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for joatmon-1.0.1rc1.tar.gz
Algorithm Hash digest
SHA256 07caab058b5654184db2a1faaaafc50b33cc319a8d586f653319fb427f0c7b91
MD5 3dcb72557b77e31ec4d6f66a222e6b95
BLAKE2b-256 25f1757e2bbc13e0089fae0861a00d1cd835731da50ac0bdacd71bb0a0a70b81

See more details on using hashes here.

File details

Details for the file joatmon-1.0.1rc1-py3-none-any.whl.

File metadata

  • Download URL: joatmon-1.0.1rc1-py3-none-any.whl
  • Upload date:
  • Size: 190.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for joatmon-1.0.1rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 9d623f385e12754b9d3463b8d01e74a95599487e8b80b803c64daa1b6d6a028f
MD5 8a9689c488809453e1e96a8058641a11
BLAKE2b-256 1ef3d6c4f3bc511d69ecf9faa1ccda3069383cc81ae0f4be5ed1e3944374437d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page