Read parquet data directly into numpy array
Project description
JollyJack
Features
- Reading parquet files directly into numpy arrays and torch tensors (fp16, fp32, fp64)
- Faster and requiring less memory than vanilla PyArrow
- Compatibility with PalletJack
Known limitations
- Data cannot contain null values
Required
- pyarrow ~= 17.0
JollyJack operates on top of pyarrow, making it an essential requirement for both building and using JollyJack. While our source package is compatible with recent versions of pyarrow, the binary distribution package specifically requires the latest major version of pyarrow.
Installation
pip install jollyjack
How to use:
Generating a sample parquet file:
import jollyjack as jj
import pyarrow.parquet as pq
import pyarrow as pa
import numpy as np
from pyarrow import fs
chunk_size = 3
n_row_groups = 2
n_columns = 5
n_rows = n_row_groups * chunk_size
path = "my.parquet"
data = np.random.rand(n_rows, n_columns).astype(np.float32)
pa_arrays = [pa.array(data[:, i]) for i in range(n_columns)]
schema = pa.schema([(f'column_{i}', pa.float32()) for i in range(n_columns)])
table = pa.Table.from_arrays(pa_arrays, schema=schema)
pq.write_table(table, path, row_group_size=chunk_size, use_dictionary=False, write_statistics=True, store_schema=False, write_page_index=True)
Generating a numpy array to read into:
# Create an array of zeros
np_array = np.zeros((n_rows, n_columns), dtype='f', order='F')
Reading entire file into numpy array:
pr = pq.ParquetReader()
pr.open(path)
row_begin = 0
row_end = 0
for rg in range(pr.metadata.num_row_groups):
row_begin = row_end
row_end = row_begin + pr.metadata.row_group(rg).num_rows
# To define which subset of the numpy array we want read into,
# we need to create a view which shares underlying memory with the target numpy array
subset_view = np_array[row_begin:row_end, :]
jj.read_into_numpy (source = path
, metadata = pr.metadata
, np_array = subset_view
, row_group_indices = [rg]
, column_indices = range(pr.metadata.num_columns))
# Alternatively
with fs.LocalFileSystem().open_input_file(path) as f:
jj.read_into_numpy (source = f
, metadata = None
, np_array = np_array
, row_group_indices = range(pr.metadata.num_row_groups)
, column_indices = range(pr.metadata.num_columns))
Reading columns in reversed order:
with fs.LocalFileSystem().open_input_file(path) as f:
jj.read_into_numpy (source = f
, metadata = None
, np_array = np_array
, row_group_indices = range(pr.metadata.num_row_groups)
, column_indices = {i:pr.metadata.num_columns - i - 1 for i in range(pr.metadata.num_columns)})
Reading column 3 into multiple destination columns
with fs.LocalFileSystem().open_input_file(path) as f:
jj.read_into_numpy (source = f
, metadata = None
, np_array = np_array
, row_group_indices = range(pr.metadata.num_row_groups)
, column_indices = ((3, 0), (3, 1)))
Generating a torch tensor to read into:
import torch
# Create a tesnsor and transpose it to get Fortran-style order
tensor = torch.zeros(n_columns, n_rows, dtype = torch.float32).transpose(0, 1)
Reading entire file into the tensor:
pr = pq.ParquetReader()
pr.open(path)
jj.read_into_torch (source = path
, metadata = pr.metadata
, tensor = tensor
, row_group_indices = range(pr.metadata.num_row_groups)
, column_indices = range(pr.metadata.num_columns)
, pre_buffer = True
, use_threads = True)
print(tensor)
Benchmarks:
n_threads | use_threads | pre_buffer | dtype | compression | PyArrow | JollyJack |
---|---|---|---|---|---|---|
1 | False | False | float | None | 6.79s | 3.55s |
1 | True | False | float | None | 5.17s | 2.32s |
1 | False | True | float | None | 5.54s | 2.76s |
1 | True | True | float | None | 3.98s | 2.66s |
2 | False | False | float | None | 4.63s | 2.33s |
2 | True | False | float | None | 3.89s | 2.36s |
2 | False | True | float | None | 4.19s | 2.61s |
2 | True | True | float | None | 3.36s | 2.39s |
1 | False | False | float | snappy | 7.00s | 3.56s |
1 | True | False | float | snappy | 5.21s | 2.23s |
1 | False | True | float | snappy | 5.22s | 3.30s |
1 | True | True | float | snappy | 3.73s | 2.84s |
2 | False | False | float | snappy | 4.43s | 2.49s |
2 | True | False | float | snappy | 3.40s | 2.42s |
2 | False | True | float | snappy | 4.07s | 2.63s |
2 | True | True | float | snappy | 3.14s | 2.55s |
1 | False | False | halffloat | None | 7.21s | 1.23s |
1 | True | False | halffloat | None | 3.53s | 0.71s |
1 | False | True | halffloat | None | 7.43s | 1.96s |
1 | True | True | halffloat | None | 4.04s | 1.52s |
2 | False | False | halffloat | None | 3.84s | 0.64s |
2 | True | False | halffloat | None | 3.11s | 0.57s |
2 | False | True | halffloat | None | 4.07s | 1.17s |
2 | True | True | halffloat | None | 3.39s | 1.14s |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file jollyjack-0.10.1.tar.gz
.
File metadata
- Download URL: jollyjack-0.10.1.tar.gz
- Upload date:
- Size: 139.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 359c5099159cb74062b99848045d6d89d4bcb5384ddfd2133fdb7006ebb7d2d4 |
|
MD5 | 613abc1723a89a25e9ff0c9f6e91cae3 |
|
BLAKE2b-256 | a71e8f7907420accd03d053bf5ead8715587a1ba0020e5b4204c7d62068ab729 |
Provenance
The following attestation bundles were made for jollyjack-0.10.1.tar.gz
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1.tar.gz
- Subject digest:
359c5099159cb74062b99848045d6d89d4bcb5384ddfd2133fdb7006ebb7d2d4
- Sigstore transparency entry: 146765958
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 68.3 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7f9a316262dfb816ce21af705cb2af9f2a3a62ddaa1a84c9cd101f2400ed5be |
|
MD5 | b61f318b8c9ca5cd32309030553c6741 |
|
BLAKE2b-256 | 5ef24ae43f4c8dd43e474a4ccc8ca44e8915b97a61a61de57ef27b4ba7abbe9f |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp312-cp312-win_amd64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp312-cp312-win_amd64.whl
- Subject digest:
f7f9a316262dfb816ce21af705cb2af9f2a3a62ddaa1a84c9cd101f2400ed5be
- Sigstore transparency entry: 146765964
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.12, manylinux: glibc 2.24+ x86-64, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f10b55ee08efab5a852430d0bf8c0a289f36d2de56659ad562fa2be234631f64 |
|
MD5 | d6b70c6712d2c864a4e4958c201dee4a |
|
BLAKE2b-256 | 761bc8f4bb2a6f062446994198f939705197eae766007cd67b3666edeefe97ac |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
- Subject digest:
f10b55ee08efab5a852430d0bf8c0a289f36d2de56659ad562fa2be234631f64
- Sigstore transparency entry: 146765959
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9398e9b3273245622172ab9485d32a2029b2370f8bf32e249a113f76a30002d3 |
|
MD5 | fa45c1cee0cf89dccc9c434777356225 |
|
BLAKE2b-256 | 78d739684009e5de9b1f43a5bb77f67aed7787d5021ddf1bf840da8ba8b7e60a |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Subject digest:
9398e9b3273245622172ab9485d32a2029b2370f8bf32e249a113f76a30002d3
- Sigstore transparency entry: 146765972
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 68.0 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72970aa1d384f63417bfbe45abbe9830509e8a907b411f8170fa4c354383fe78 |
|
MD5 | 92cad0adba2eb7e6b003c7070c28b2c8 |
|
BLAKE2b-256 | fe81fa558fbf2c4c9cee81982f525373d4005ed7eb966838e3cc75e5dd5470d0 |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp311-cp311-win_amd64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp311-cp311-win_amd64.whl
- Subject digest:
72970aa1d384f63417bfbe45abbe9830509e8a907b411f8170fa4c354383fe78
- Sigstore transparency entry: 146765967
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.11, manylinux: glibc 2.24+ x86-64, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59106af363a9c8ee2342a513ded16c765ca74f3e75b3d08589f43a0b15c46a02 |
|
MD5 | 106570a5dc352071d2730ca08e9d1ae8 |
|
BLAKE2b-256 | 8db9f60fe83122e3d28ff01867fc9b03d46e3d920ea433267c2bccb62aa99be1 |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
- Subject digest:
59106af363a9c8ee2342a513ded16c765ca74f3e75b3d08589f43a0b15c46a02
- Sigstore transparency entry: 146765962
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45be77b36dc52359126b6754a93302c54c607cb6c31f13f42054adca5ef28afd |
|
MD5 | c0dfdcd52c85ba5cc083c27a1c1bdaa7 |
|
BLAKE2b-256 | 5730b597b77258bb5666b830e1d9699749814742500aa412c4e18ba5b1ed3b9a |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Subject digest:
45be77b36dc52359126b6754a93302c54c607cb6c31f13f42054adca5ef28afd
- Sigstore transparency entry: 146765973
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 67.9 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53010cb2fbdac78b3de61bfcbe2b093b85a0cb0dca9f97323aac54df2a97a7df |
|
MD5 | 7b16a268c6110cb1482fcd05725bd37b |
|
BLAKE2b-256 | 517d29088386118707e013dc04a8cdc68465aed2fd9aabff06696278781ce621 |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp310-cp310-win_amd64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp310-cp310-win_amd64.whl
- Subject digest:
53010cb2fbdac78b3de61bfcbe2b093b85a0cb0dca9f97323aac54df2a97a7df
- Sigstore transparency entry: 146765965
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.10, manylinux: glibc 2.24+ x86-64, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d3eb2166d06900133ee1ae57f5fe3e9014749f0d8f44d309a9d8481567600c8 |
|
MD5 | 3c0a98be40a1ca7163e8259e59f4f30c |
|
BLAKE2b-256 | a190e1939a7745e4934c0073a08740fc1250ec954412cd97c728ae08b03a2740 |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
- Subject digest:
1d3eb2166d06900133ee1ae57f5fe3e9014749f0d8f44d309a9d8481567600c8
- Sigstore transparency entry: 146765974
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e5ac8073e6a29fde66491b7dac2c07fe6187534c47c9c121d5866d9482a0232 |
|
MD5 | 6a8069d61f2ef269a33fc927f357928b |
|
BLAKE2b-256 | 7a5f15d97c5ce7ea32d7d51721995f2bce7be06a193b1a259beff13428c364c6 |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Subject digest:
4e5ac8073e6a29fde66491b7dac2c07fe6187534c47c9c121d5866d9482a0232
- Sigstore transparency entry: 146765970
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 67.9 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 821a5f3a0c78d1f7454d37a915ba320829b460fa0e27b296910a092b05350a01 |
|
MD5 | 3c9811f518e2008a2410256e845a49e6 |
|
BLAKE2b-256 | 7cbd8035a576ac78cd0c741f58005d3f614083a00a4941484873ab6c4f215482 |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp39-cp39-win_amd64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp39-cp39-win_amd64.whl
- Subject digest:
821a5f3a0c78d1f7454d37a915ba320829b460fa0e27b296910a092b05350a01
- Sigstore transparency entry: 146765968
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.9, manylinux: glibc 2.24+ x86-64, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9ddc77758dc3a4452e5116b21f4b8b15bd4e25b2af109c3b292bc16b5f7719be |
|
MD5 | df5295b7281c924749e4f759c95858e1 |
|
BLAKE2b-256 | 7418f1ee29524a6bc5efc4b6f73ec102e85a340e9e3604d4900c3fe4fc3347c4 |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
- Subject digest:
9ddc77758dc3a4452e5116b21f4b8b15bd4e25b2af109c3b292bc16b5f7719be
- Sigstore transparency entry: 146765975
- Sigstore integration time:
- Predicate type:
File details
Details for the file jollyjack-0.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: jollyjack-0.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9cc6c59c5f82c04d00fd4409247659ad6b68be87cb2e754f0c0f08711fe2db15 |
|
MD5 | 1b3308ce7b176603e0cb13a8d832ff6d |
|
BLAKE2b-256 | 93a052929220d4a04557486797e146caf62bcfa65b9cdc7195de2c4274950b5a |
Provenance
The following attestation bundles were made for jollyjack-0.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
:
Publisher:
python.yml
on marcin-krystianc/JollyJack
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
jollyjack-0.10.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Subject digest:
9cc6c59c5f82c04d00fd4409247659ad6b68be87cb2e754f0c0f08711fe2db15
- Sigstore transparency entry: 146765971
- Sigstore integration time:
- Predicate type: