JSON to excel convertor
Project description
JSON to excel converter
A package that converts json to CSV, excel or other table formats
Sample output
Simple json
[
{
"col1": "val1",
"col2": "val2"
}
]
the generated CSV/excel is:
col1 col2
==================
val1 val2
Nested json
[
{
"col1": "val1",
"col2": {
"col21": "val21",
"col22": "val22"
}
}
]
the generated CSV/excel is (in excel, col2 spans two cells horizontally):
col1 col2
col21 col22
=================================
val1 val21 val22
json with array property
[
{
"col1": "val1",
"col2": [
{
"col21": "val21"
},
{
"col21": "val22"
}
]
}
]
the generated CSV/excel is (in excel, col2 spans two cells horizontally):
col1 col2
col21 col21
=================================
val1 val21 val22
Installation
pip install json-excel-converter[extra]
where extra is:
xlsxwriter
to use the xlsxwriter
Usage
Simple usage
from json_excel_converter import Converter
from json_excel_converter.xlsx import Writer
data = [
{'a': [1], 'b': 'hello'},
{'a': [1, 2, 3], 'b': 'world'}
]
conv = Converter()
conv.convert(data, Writer(file='/tmp/test.xlsx'))
Streaming usage with restarts
from json_excel_converter import Converter, LinearizationError
from json_excel_converter.csv import Writer
conv = Converter()
writer = Writer(file='/tmp/test.csv')
while True:
try:
data = get_streaming_data() # custom function to get iterator of data
conv.convert_streaming(data, writer)
break
except LinearizationError:
pass
Arrays
When the first row is processed, the library guesses the columns layout. In case of arrays, a column (or more columns if the array contains json objects) is created for each of the items in the array, as shown in the example above.
On subsequent rows the array might contain more items. The library reacts by adjusting
the number of columns in the layout and raising LinearizationError
as previous rows might
be already output.
Converter.convert_streaming
just raises this exception - it is the responsibility of caller
to take the right action.
Converter.convert
captures this error and restarts the processing. In case of CSV
this means truncating the output file to 0 bytes and processing the data again. XLSX writer
caches all the data before writing them to excel so the restart just means discarding the cache.
If you know the size of the array in advance, you should pass it in options. Then no
processing restarts are required and LinearizationError
is not raised.
from json_excel_converter import Converter, Options
from json_excel_converter.xlsx import Writer
data = [
{'a': [1]},
{'a': [1, 2, 3]}
]
options = Options()
options['a'].cardinality = 3
conv = Converter(options=options)
writer = Writer(file='/tmp/test.xlsx')
conv.convert(data, writer)
# or
conv.convert_streaming(data, writer) # no exception occurs here
XLSX Formatting
Cell format
XLSX writer enables you to format the header and data by passing an array of header_formatters or
data_formatters. Take these from json_excel_converter.xlsx.formats
package or create your own.
from json_excel_converter import Converter
from json_excel_converter.xlsx import Writer
from json_excel_converter.xlsx.formats import LastUnderlined, Bold, \
Centered, Format
data = [
{'a': 'Hello'},
{'a': 'World'}
]
w = Writer('/tmp/test3.xlsx',
header_formats=(
Centered, Bold, LastUnderlined,
Format({
'font_color': 'red'
})),
data_formats=(
Format({
'font_color': 'green'
}),)
)
conv = Converter()
conv.convert(data, w)
See https://xlsxwriter.readthedocs.io/format.html for details on formats in xlsxwriter
Column widths
Pass the required column widths to writer:
w = Writer('/tmp/test3.xlsx', column_widths={
'a': 20
})
Width of nested data can be specified as well:
data = [
{'a': {'b': 1, 'c': 2}}
]
w = Writer('/tmp/test3.xlsx', column_widths={
'a.b': 20,
'a.c': 30,
})
To set the default column width, pass it as DEFAULT_COLUMN_WIDTH
property:
w = Writer('/tmp/test3.xlsx', column_widths={
DEFAULT_COLUMN_WIDTH: 20
})
Row heights
Row heights can be specified via the row_heights
writer option:
w = Writer('/tmp/test3.xlsx', row_heights={
DEFAULT_ROW_HEIGHT: 20, # a bit taller rows
1: 40 # extra tall header
})
Urls
To render url, pass a function that gets data of a row and returns url to options
data = [
{'a': 'https://google.com'},
]
options = Options()
options['a'].url = lambda data: data['a']
conv = Converter(options)
conv.convert(data, w)
Note: this will only be rendered in XLSX output, CSV output will silently ignore the link.
Custom cell rendering
Override the write_cell
method. The method receives cell_data
(instance of json_excel_converter.Value
) and data
(the original
data being written to this row). Note that this method is used both
for writing header and rows - for header the data
parameter is None.
class UrlWriter(Writer):
def write_cell(self, row, col, cell_data, cell_format, data):
if cell_data.path == 'a' and data:
self.sheet.write_url(row, col,
'https://test.org/' + data['b'],
string=cell_data.value)
else:
super().write_cell(row, col, cell_data, cell_format, data)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file json_excel_converter-1.2.0.tar.gz
.
File metadata
- Download URL: json_excel_converter-1.2.0.tar.gz
- Upload date:
- Size: 17.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.5 CPython/3.7.1 Linux/4.15.0-1028-gcp
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e06f2652cf701d1331e9e55af6839df51a51b4ab9f2edb546e41de2eebfefda |
|
MD5 | c088eafc5a490580440bcce793c5bd5a |
|
BLAKE2b-256 | 74b050aabc1014756596607bec4a4a96ec622b8460316c50a8ec28650bf933a1 |
File details
Details for the file json_excel_converter-1.2.0-py3-none-any.whl
.
File metadata
- Download URL: json_excel_converter-1.2.0-py3-none-any.whl
- Upload date:
- Size: 16.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.5 CPython/3.7.1 Linux/4.15.0-1028-gcp
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7c876f7cd4f442e4d67025dc1a33c45eca63d585d4860ca7c7bf69f26fabefc |
|
MD5 | 6da3cd1f4e7aa1ffe4554d26a146cb37 |
|
BLAKE2b-256 | 29a3826c014a964a0dd4c064929478b6d3ebeda34e66227aafedeeb94708d110 |