Skip to main content

Use this Lib to create a structure schema of a given JSON and also to check if a given JSON matches a given schema.

Project description

Use this Lib to create a structure schema of a given JSON and also to check if a given JSON matches a given schema or simply to diff 2 JSONs.

Why Should I Use This?

I made this for use when validating a JSON REST API using Behave. I wanted to be sure that the JSON’s structure is correct, no matter it’s content.

You may use it for whatever you want :)

Differ Features

  • Diff 2 JSONs

Schema Features

  • Export schema for a given JSON

  • Validate a given schema

  • Check if a given JSON matches a given schema

  • Highlight any unmatched data between JSON and schema

Differ Usage

diff_jsons()

Show differences between 2 JSONs

In [1]: from json_schema.json_differ import diff_jsons

In [2]: diff_jsons('{"a": "1"}', '{"a": 2}')
{
    "a": "'2' should match 'str:1'"
}
Out[2]: False

In [3]: diff_jsons('{"a": "1"}', '{"a": "1"}')
Out[3]: True

Schema Usage

json_schema.loads()

Load schema function. Receive a schema and return and JsonSchema object instance.

In [1]: from json_schema import json_schema

In [2]: my_schema = '{"my_key": "int:0:10|str"}'

In [3]: my_schema_object = json_schema.loads(my_schema)

In [4]: my_schema_object
Out[4]: <json_schema.JsonSchema at 0x10aa96f10>

json_schema.dumps()

Dump schema function. Receive a JSON and return an automaticaly created schema. Its very userful when working with some large or complex JSON. Be aware that you may have to adapt its returned schema to work with your JSON variations. For example, if your JSON have some optional value that, this time, is null the schema created will expect that that value is AWAYS null.

In [1]: from json_schema import json_schema

In [2]: my_json = '{"parrot": ["is no more", "It has ceased to be"], "ex-parrot": true, "volts": 2000}'

In [3]: my_automatic_schema = json_schema.dumps(my_json)

In [4]: my_automatic_schema
Out[4]: '{"ex-parrot": "bool", "parrot": ["str", "..."], "volts": "int"}'

json_schema.match()

Check if a given JSON matches a given schema.

In [1]: from json_schema import json_schema

In [2]: my_json = '{"parrot": ["is no more", "It has ceased to be"], "ex-parrot": true, "volts": 2000}'

In [3]: my_schema = '{"ex-parrot": "bool", "parrot": ["str", "..."], "volts": "int"}'

In [4]: json_schema.match(my_json, my_schema)
Out[4]: True

JsonSchema Object

Object that contains all validations e checkups for that given schema.

JsonSchema.full_check()

Check and highlights any errors found.

In [1]: from json_schema import json_schema

In [2]: my_schema = '{"ex-parrot": "bool", "parrot": ["str", "..."], "volts": "int"}'

In [3]: JS = json_schema.loads(my_schema)

In [4]: my_json = '{"parrot": ["is no more", "It has ceased to be"], "ex-parrot": true, "volts": 2000}'

In [5]: JS.full_check(my_json)
{
    "ex-parrot": true,
    "parrot": [
        true,
        true
    ],
    "volts": true
}

In [6]: other_json = '{"parrot": ["is no more", "It has ceased to be"], "ex-parrot": true, "volts": "foobar"}'

In [7]: JS.full_check(other_json)
{
    "ex-parrot": true,
    "parrot": [
        true,
        true
    ],
    "volts": "'foobar' should match 'int'"
}

Usage Example

In [1]: from json_schema import json_schema

In [2]: um_json = '''{"chave_list": [1, 2],
                      "chave_dict": {"chave": "valor"},
                      "chave_int": 1,
                      "chave_float": 1.2,
                      "chave_string": "1"}'''

In [3]: esquema = json_schema.dumps(um_json)

In [4]: print esquema
{"chave_list": ["int", "..."], "chave_dict": {"chave": "str"}, "chave_int": "int", "chave_float": "float", "chave_string": "str"}

In [5]: js = json_schema.loads(esquema)

In [6]: js
Out[6]: <json_schema.JsonSchema at 0x1064f0f50>

In [7]: js == um_json
Out[7]: True

Validators

string

Will match only if that given JSON data is string.

'{"my_key": "str"}'

Will match any of those:

'{"my_key": "my_value"}'
'{"my_key": "my value"}'
'{"my_key": ""}'
'{"my_key": "123"}'
'{"my_key": "3.567"}'

It my have max length limit using “str:max_len”

'{"my_key": "str:3"}'

Will match any of those:

'{"my_key": ""}'
'{"my_key": "a"}'
'{"my_key": "ab"}'
'{"my_key": "abc"}'
'{"my_key": "123"}'

But not match those:

'{"my_key": "abcd"}'
'{"my_key": "abcde"}'
'{"my_key": "1234"}'

Or direct string match using “str:string_to_match”

'{"my_key": "str:Foo Bar"}'

Will match only:

'{"my_key": "Foo Bar"}'

And not match those:

'{"my_key": "foo bar"}'
'{"my_key": "Foo bar"}'
'{"my_key": "anything else"}'

int

Will match only if that given JSON data is integer.

'{"my_key": "int"}'

Will match any of those:

'{"my_key": 0}'
'{"my_key": 1}'
'{"my_key": 12345}'
'{"my_key": -1}'
'{"my_key": -123}'

It my have min:max value limit using “int:min:max”

'{"my_key": "int:-3:3"}'

Will match any of those:

'{"my_key": 0}'
'{"my_key": -1}'
'{"my_key": -3}'
'{"my_key": 1}'
'{"my_key": 3}'

But not match those:

'{"my_key": -4}'
'{"my_key": 4}'
'{"my_key": 12345}'

float

Same as int but for float values

'{"my_key": "float"}'

Will match any of those:

'{"my_key": 0.0}'
'{"my_key": 1.1}'
'{"my_key": 123.45}'
'{"my_key": -1.1}'
'{"my_key": -12.3}'

It my have min:max value limit using “float:min:max”

'{"my_key": "float:-3.1:3.5"}'

Will match any of those:

'{"my_key": 0.0}'
'{"my_key": -1.2}'
'{"my_key": -3.1}'
'{"my_key": 1.0}'
'{"my_key": 3.5}'

But not match those:

'{"my_key": -4.0}'
'{"my_key": 4.0}'
'{"my_key": 123.45}'
'{"my_key": 2}'

url

Will match only if that given JSON data is a string that contains a valid URL.

'{"my_key": "url"}'

Will match any of those:

'{"my_key": "http://example.com"}'
'{"my_key": "https://example.com"}'
'{"my_key": "ftp://example.com"}'
'{"my_key": "ftps://example.com"}'

Validation is made using the folowing python regular expression code

regex = re.compile(r'^(?:http|ftp)s?://'  # HTTP, HTTPS, FTP, FTPS
                   # Dominio
                   r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|'
                   # Localhost
                   r'localhost|'
                   # IP
                   r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'
                   # Porta
                   r'(?::\d+)?'
                   r'(?:/?|[/?]\S+)$', re.IGNORECASE)
return True if regex.match(item) else False

bool

Will match only if that given JSON data is boolean.

'{"my_key": "bool"}'

Will match only:

'{"my_key": true}'
'{"my_key": false}'

You may also match it’s value:

'{"my_key": "bool:True"}'
'{"my_key": "bool:False"}'

regex

Will match only if that given JSON data is string and match some regex string.

'{"my_key": "regex:[regex string]"}'

Example:

In [1]: from json_schema import json_schema

In [2]: json_schema.loads('{"my_key": "regex:^[0-9]{2}:[0-9]{2}:[0-9]{2}"}') == '{"my_key": "00:00:00"}'
Out[2]: True

In [3]: json_schema.loads('{"my_key": "regex:^[0-9]{2}:[0-9]{2}:[0-9]{2}"}') == '{"my_key": "00:00:0"}'
Out[3]: False

In [4]: json_schema.loads('{"my_key": "regex:^[0-9]{2}:[0-9]{2}:[0-9]{2}"}') == '{"my_key": "00:00:AA"}'
Out[4]: False

python

Will match only if that given python code return True. The value in JSON will be used as ‘value’ variable.

'{"my_key": "python:[python code]"}'

Example:

In [1]: from json_schema import json_schema

In [2]: json_schema.loads('{"my_key": "python:value.upper() == value"}') == '{"my_key": "FOOBAR"}'
Out[2]: True

In [3]: json_schema.loads('{"my_key": "python:value.upper() == value"}') == '{"my_key": "FooBar"}'
Out[3]: False

In [4]: json_schema.loads('{"my_key": "python:value%2 == 2"}') == '{"my_key": 10}'
Out[4]: True

In [5]: json_schema.loads('{"my_key": "python:value%2 == 2"}') == '{"my_key": 11}'
Out[5]: False

datetime

Will match only if that given value match with datetime string formatter https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior

'{"my_key": "datetime:format string"}'

Example:

In [1]: from json_schema import json_schema

In [2]: json_schema.loads('{"my_key": "datetime:%Y-%m-%d"}') == '{"my_key": "2015-07-07"}'
Out[2]: True

In [3]: json_schema.loads('{"my_key": "datetime:%Y-%m-%d"}') == '{"my_key": "2015-17-07"}'
Out[3]: False

In [4]: json_schema.loads('{"my_key": "datetime:%d/%m/%Y %H:%M:%S"}') == '{"my_key": "13/04/1984 11:22:33"}'
Out[4]: True

In [5]: json_schema.loads('{"my_key": "datetime:%d/%m/%Y %H:%M:%S"}') == '{"my_key": "04/13/1984 11:22:33"}'
Out[5]: False

any

Will match anything but null.

'{"my_key": "any"}'

Will match any of those:

'{"my_key": 10}'
'{"my_key": "foo"}'
'{"my_key": 1.5}'
'{"my_key": true}'
'{"my_key": ""}'

But not

'{"my_key": null}'

null

Will match only null values.

'{"my_key": "null"}'

Will match:

'{"my_key": null}'

But not

'{"my_key": 10}'
'{"my_key": "foo"}'
'{"my_key": 1.5}'
'{"my_key": true}'
'{"my_key": ""}'

empty

Will match empty structures.

Supported:

'{"my_key": "empty:list"}'
'{"my_key": "empty:dict"}'
'{"my_key": "empty:hash"}'
'{"my_key": "empty:object"}'

Types ‘hash’, ‘dict’ and ‘object’ are actually same

'{"my_key": "empty:list"}'

Will match:

'{"my_key": []}'

And

'{"my_key": "empty:object"}'

Will match:

'{"my_key": {}}'

But not

'{"my_key": null}'

Especial validations

‘|’ - OR operator

Will match if any of validators match.

'{"my_key": "str|int"}'

Will match:

'{"my_key": "foo"}'
'{"my_key": 123}'

Example

In [1]: from json_schema import json_schema

In [2]: json_schema.loads('{"my_key": "int|str"}') == '{"my_key": "foo"}'
Out[2]: True

In [3]: json_schema.loads('{"my_key": "int|str"}') == '{"my_key": 123}'
Out[3]: True

In [4]: json_schema.loads('{"my_key": "int:0:10|str:3"}') == '{"my_key": "foo"}'
Out[4]: True

In [5]: json_schema.loads('{"my_key": "int:0:10|str:3"}') == '{"my_key": 3}'
Out[5]: True

In [6]: json_schema.loads('{"my_key": "int:0:10|str:2"}') == '{"my_key": "foo"}'
Out[6]: False

In [7]: json_schema.loads('{"my_key": "int:10|str"}') == '{"my_key": 123}'
Out[7]: False

This will match everything:

'{"my_key": "any|null"}'

Arrays

Arrays are ordered so your schema order matters as also its size.

'{"my_key": ["str", "str", "int"]}'

Will match:

'{"my_key": ["foo", "bar", 123]}'

But not

'{"my_key": ["foo", 123, "bar"]}'
'{"my_key": ["foo", "bar", 123, 123]}'

If you dont know the size of your array you may user a special 2 item arrays as follows

'{"my_key": ["str", "..."]}'

That will match:

'{"my_key": ["foo"]}'
'{"my_key": ["foo", "bar"]}'
'{"my_key": ["foo", "bar", "Hello World"]}'
'{"my_key": ["foo", "bar", "Hello World", "etc"]}'

Or even:

'{"my_key": ["str|int", "..."]}'

That will match:

'{"my_key": ["foo"]}'
'{"my_key": [123]}'
'{"my_key": ["foo", "bar"]}'
'{"my_key": ["foo", 123, "Hello World"]}'
'{"my_key": [123, "bar", "Hello World", 0]}'

Hashs (dicts)

Hashs are not ordered so your schema order does not matters but its keys does.

'{"my_key": {"internal_key_1": "str", "internal_key_2": "int"}'

Will match:

'{"my_key": {"internal_key_1": "foo", "internal_key_2": 123}'
'{"my_key": {"internal_key_2": 123, "internal_key_2": "foo"}'

But not

'{"my_key": {"internal_key_1": 123, "internal_key_2": "foo"}'
'{"my_key": {"internal_key_1": "foo", "internal_key_3": 123}'
'{"my_key": {"internal_key_1": "foo", "internal_key_2": 123, "fizz": "buzz"}'

Recursivity

All validations are recursive so they will check into arrays, hashs, array of arrays, etc.

'[{"my_key": ["str|int", "..."]}, {"my_key": "str"}, "int", ["int|str", "str"]'

Will match:

'[{"my_key": [1, "foo", "bar", 100]}, {"my_key": "foo"}, 12345, [123, "foo"]'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

json-schema-matcher-0.1.7.1.tar.gz (11.1 kB view hashes)

Uploaded Source

Built Distribution

json_schema_matcher-0.1.7.1-py2.py3-none-any.whl (15.1 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page