A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.11.3-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0aab7f626f447e06fc59590b24d44aa84a28d90bbcfab80723f08d16973e4cb6 |
|
MD5 | 9dfa05be4a99c39276ad8f0e8b8497cd |
|
BLAKE2b-256 | a641c3672f6311baa77985217fd845cdec4dfd25c375f41567d0e09c1c289eb5 |
Hashes for jtd_to_proto-0.11.3-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 469648ea521464076b4214972bb8eeb1da8f3f9574eda1622b8220c356f17367 |
|
MD5 | f1ac388c849f915374a13953426c42d2 |
|
BLAKE2b-256 | 1588b120c18d6ba5dadac56c2787e1aa223754cf6656f62ea95419f3519d9dfa |
Hashes for jtd_to_proto-0.11.3-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6405c597f217b6524a304be9df17175391ef0333bad5e5b56c91842a199666a |
|
MD5 | 0a2ebaabc81a52df911385d36e5d7917 |
|
BLAKE2b-256 | a09399148b49cc6eac629f583d0287db29a80e89874ec83d27374634719fa5c2 |
Hashes for jtd_to_proto-0.11.3-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d7bb0a213c229cdd3c6e89eafc978bff9dcad0704bf2de7795a7ec11df071229 |
|
MD5 | a32c37416ca895e69bb73edd3e85ebd8 |
|
BLAKE2b-256 | 80ebea2f4dcb9131b40319324daa8ec0e23ea7c06f9d9af75fe355c63056048d |