Skip to main content

A friendly and lightweight wrapper for arq.

Project description

just-jobs

GitHub Workflow Status PyPI - Downloads GitHub Buy a tree

A friendly and lightweight wrapper for arq. just-jobs provides a simple interface on top of arq that implements additional functionality like synchronous job types (IO-bound vs. CPU-bound) and signed and secure task serialization.

Documentation: https://justjobs.thearchitector.dev.

Tested support on Python 3.7, 3.8, 3.9, and 3.10, 3.11.

$ pdm add just-jobs
# or
$ pip install --user just-jobs

Features

just-jobs doesn't aim to replace the invocations that arq provides, only wrap some of them to make job creation and execution easier and better. It lets you:

  • Define and run non-async jobs. Passing a non-async @job function to arq will run properly. Non-async jobs can also be defined as either IO-bound or CPU-bound, which changes how the job will be executed to prevent blocking the asyncio event loop.
  • The arq Context parameter now works a lot like FastAPI's Request. It's no longer a required parameter, but if it exists, it will get set. It doesn't have to be named ctx either, only have the type Context.
  • Specify a single RedisSettings within your WorkerSettings from which you can create a pool using Settings.create_pool().
  • Run jobs either immediately or via normal arq enqueueing.
  • Use non-pickable job arguments and kwargs (supported by the dill library).

Usage

Using just-jobs is pretty straight forward:

Add @job() to any function to make it a delayable job.

If the job is synchronous, specify its job type so just-jobs knows how to optimally run it. If you don't, you'll get an error. This helps encourage thoughtful and intentional job design while ensuring that the event loop is never blocked.

@job(job_type=JobType.CPU_BOUND)
def complex_math(i: int, j: int, k: int)

If it's a coroutine function, you don't need to specify a job type (and will get a warning if you do).

@job()
async def poll_reddit(subr: str)

Invoke a job normally if you want to run it immediately.

Invoking a job as a regular function allows you to run a job as if it were one. If you have logic that you only want to execute when enqueued, include a parameter with type Context and check if it exists at runtime (functions with a Context that are run immediately will have that argument set to None).

@job()
async def context_aware(ctx: Context, msg: str):
    if ctx:
        # enqueued then run by arq
        return f"hello {msg}"
    else:
        # invoked manually
        return f"bye {msg}"

await context_aware("world") == "bye world"

j = await p.enqueue_job("context_aware", "world")
await j.result() == "hello world"

Define WorkerSettings using the BaseSettings metaclass.

The execution logic that @job provides requires some stuff. When you defining your WorkerSettings, you must declare BaseSettings as its metaclass to ensure that stuff exists.

class Settings(metaclass=BaseSettings):
    redis_settings = ...

Use Settings.create_pool().

While you may elect to use arq.connections.create_pool as you would normally, using the create_pool function provided by your Settings class ensures the pool it creates always matches your worker's Redis and serialization settings (it will be less of a headache). It also lets you take advantage of additional functionality, namely that it can be used as an auto-closing context manager.

# manually
pool = await Settings.create_pool()
await pool.close(close_connection_pool=True)

# or as an async context manager
async with Settings.create_pool() as pool:
    ...

Enqueue your job.

just-jobs doesn't change the way in which you enqueue your jobs. Just use await pool.enqueue_job(...).

await pool.enqueue_job('complex_math', 2, 1, 3)

Caveats

  1. arq.func() and @job() are mutually exclusive. If you want to configure a job in the same way, pass the settings you would have passed to func() to @job() instead.

    @job(job_type=JobType.CPU_BOUND, keep_result_forever=True, max_tries=10)
    def task(a: int, b: int):
       return a + b
    
  2. There isn't support for asynchronous CPU-bound tasks. Currently, job types only configure the execution behavior of synchronous tasks (not coroutines). However, there are some valid cases for CPU-bound tasks that also need to be run in an asyncio context.

    At the moment, the best way to achieve this will be to create a synchronous CPU-bound task (so it runs in a separate process) that then invokes a coroutine via asyncio.run. If you intend on running the task in the current context from time to time, just return the coroutine instead and it will get automatically executed in the current event loop.

    async _async_task(a: int, b: int, c: int):
        ab = await add(a, b)
        return await add(ab, c)
    
    @job(job_type=JobType.CPU_BOUND)
    def wrapper_cpu_bound(ctx: Context, a: int, b: int, c: int):
        task = _async_task(a, b, c)
        return asyncio.run(task) if ctx else task
    

Example

The complete example is available at docs/example.py and should work out of the box. The snippet below is just an excerpt to show the features described above:

from just_jobs import BaseSettings, Context, JobType, job

@job()
async def async_task(url: str):
    return url

@job(job_type=JobType.IO_BOUND)
def sync_task(ctx: Context, url: str):
    # if the context is present, this is being run from the arq listener
    if ctx:
        print(url)
    return url

class Settings(metaclass=BaseSettings):
    functions = [async_task, sync_task]
    redis_settings = RedisSettings(host="redis")

async def main():
    # create a Redis pool using the Settings already defined
    pool = await Settings.create_pool()
    # run the_task right now and return the url
    url = sync_task("https://www.theglassfiles.com")

    await pool.enqueue_job("async_task", "https://www.eliasfgabriel.com")
    await pool.enqueue_job("sync_task", "https://gianturl.net")

    await pool.close(close_connection_pool=True)

License

This software is licensed under the 3-Clause BSD License.

This package is Treeware. If you use it in production, consider buying the world a tree to thank me for my work. By contributing to my forest, you’ll be creating employment for local families and restoring wildlife habitats.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

just_jobs-2.1.0.tar.gz (14.1 kB view details)

Uploaded Source

Built Distribution

just_jobs-2.1.0-py3-none-any.whl (11.4 kB view details)

Uploaded Python 3

File details

Details for the file just_jobs-2.1.0.tar.gz.

File metadata

  • Download URL: just_jobs-2.1.0.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.8.0a2 CPython/3.11.2

File hashes

Hashes for just_jobs-2.1.0.tar.gz
Algorithm Hash digest
SHA256 fe32a886cb5484681141203c9353fbfe176bcb39a9fcd2def435f67b108e899b
MD5 091261d10c5b7c4b3826d7b11de92bee
BLAKE2b-256 6eaf278504654cd20ff39fa913a56cdda9d7dc8370b9e6a46517e04201853481

See more details on using hashes here.

File details

Details for the file just_jobs-2.1.0-py3-none-any.whl.

File metadata

  • Download URL: just_jobs-2.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.8.0a2 CPython/3.11.2

File hashes

Hashes for just_jobs-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5f6a0fb60bc195ba6a8abb29d11b486a626149353800e24006ac2d57d11df522
MD5 d345ef3cf2f395b6655512a764bfeedf
BLAKE2b-256 4c71238878a74546a2fcbaf2e1f4becd971b3c5f062f90be8a59e4a42af27b5f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page