Skip to main content

Collection of Python utilities intended to be useful for machine learning research and experiments.

Project description

jutility

Collection of Python utilities intended to be useful for machine learning research and experiments.

Contents

Install with pip

The jutility package is available as a Python package on PyPI, and can be installed with pip using the following commands:

python -m pip install -U pip
python -m pip install -U jutility

Alternatively, jutility can be installed in "editable mode" from the GitHub repository:

git clone https://github.com/jakelevi1996/jutility.git
cd jutility
python -m pip install -e .

Usage examples

plotting

Making a simple plot

import numpy as np
from jutility import plotting

x = np.linspace(-10, 10, 100, dtype=np.float32)
plotting.plot(
    plotting.Line(x, np.log(1 + np.exp(x)), label="Softplus", c="b"),
    plotting.Line(x, np.maximum(x, 0),      label="ReLU",     c="r", ls="--"),
    legend=True,
    plot_name="Softplus vs ReLU",
    dir_name="images",
)

import numpy as np
from jutility import plotting

rng = np.random.default_rng(0)
x = np.linspace(0, 2)
f = lambda x: x + 0.1 * rng.normal(size=x.shape)

plotting.plot(
    plotting.Line(x, f(x), c="b", marker="o", label="Blue data"),
    plotting.Line(x, np.exp(-f(x)), c="r", marker="o", label="Red data"),
    axis_properties=plotting.AxisProperties("x label", "y label"),
    legend=True,
    plot_name="Simple plot",
    dir_name="images",
)

Multiple lines in a single Line

import numpy as np
from jutility import plotting, util

n = 100
batch_size = 20
rng = np.random.default_rng(0)
noise = rng.normal(size=[n, batch_size])

x = np.linspace(-1, 4, n).reshape(n, 1)
y = np.exp(-x) + 0.1 * noise

plotting.plot(
    plotting.Line(x, y, alpha=0.2,       c="b", zorder=10),
    plotting.Line(x, np.mean(y, axis=1), c="r", zorder=20),
    plot_name="Multiple lines in a single Line",
    dir_name="images",
)

Vector fields (with optional normalisation)

import numpy as np
from jutility import plotting, util

n = 25
x = np.linspace(-2, 2, n).reshape(1, n)
y = np.linspace(-2, 2, n).reshape(n, 1)
dx = y - x
dy = x + y
mp = plotting.MultiPlot(
    plotting.Subplot(
        plotting.Quiver(x, y, dx, dy, zorder=10, normalise=False),
        axis_properties=plotting.AxisProperties(title="normalise=False")
    ),
    plotting.Subplot(
        plotting.Quiver(x, y, dx, dy, zorder=10, normalise=True),
        axis_properties=plotting.AxisProperties(title="normalise=True")
    ),
    figure_properties=plotting.FigureProperties(figsize=[10, 4])
)
mp.save(plot_name="Vector field", dir_name="images")

Shared colour bar

import numpy as np
from jutility import plotting

rng = np.random.default_rng(0)
z1 = rng.random((100, 200)) + 5
z2 = rng.random((100, 200)) + 2
v_min = min(z1.min(), z2.min())
v_max = max(z1.max(), z2.max())

colour_bar = plotting.ColourBar(v_min, v_max)

mp = plotting.MultiPlot(
    plotting.ImShow(c=z1, vmin=v_min, vmax=v_max),
    colour_bar,
    plotting.ImShow(c=z2, vmin=v_min, vmax=v_max),
    colour_bar,
    figure_properties=plotting.FigureProperties(
        num_rows=2,
        num_cols=2,
        width_ratios=[1, 0.2],
        tight_layout=False,
        title="Shared colour bar",
    ),
)
mp.save("Shared colour bar", dir_name="images")

More complex examples coming soon

util

Coming soon

sweep

Coming soon

(in the meantime, see scripts/make_logo.py which made the logo above, and unit tests for util, plotting, and sweep)

Unit tests

To run all unit tests, install pytest (these tests have previously been run with pytest version 5.4.1), and run the following command (at the time of writing, this takes about 17 seconds to run 42 unit tests, because several unit tests involve saving images or GIFs to disk):

pytest

Build package locally

jutility can be installed in "editable mode" using pip using the following command:

python -m pip install -e .

Alternatively, jutility can be built and installed locally using the following commands, replacing $WHEEL_NAME with the name of the wheel built by the python -m build command (for example, jutility-0.0.5-py3-none-any.whl):

python -m build
python -m pip install --force-reinstall --no-deps dist/$WHEEL_NAME

Or alternatively, run the script build_local.py, which automatically extracts the version number to infer the name of the wheel and then builds it:

python build_local.py

Updating package on PyPI

This package was uploaded to PyPI following the Packaging Python Projects tutorial in the official Python documentation.

To update PyPI with a newer version, update the version tag in setup.cfg, and then use the following commands:

rm -rf dist/*
python -m build
python -m twine upload dist/*

When prompted by twine, enter __token__ as the username, and paste an API token from the PyPI account management webpage as the password (including the pypi- prefix).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jutility-0.0.19.tar.gz (36.2 kB view details)

Uploaded Source

Built Distribution

jutility-0.0.19-py3-none-any.whl (24.4 kB view details)

Uploaded Python 3

File details

Details for the file jutility-0.0.19.tar.gz.

File metadata

  • Download URL: jutility-0.0.19.tar.gz
  • Upload date:
  • Size: 36.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for jutility-0.0.19.tar.gz
Algorithm Hash digest
SHA256 c9ba5d2cbe4131ed5a5c33d9e2ca829cf9002c4d60b83fc6b406be3e2ab7d79d
MD5 65eb33a0b58c0b2707a3b5d549e07a2f
BLAKE2b-256 a8e49f715ddb5938de01bf44b4059ed3f32014812ceb0b6fc0d2948f3dfdf633

See more details on using hashes here.

File details

Details for the file jutility-0.0.19-py3-none-any.whl.

File metadata

  • Download URL: jutility-0.0.19-py3-none-any.whl
  • Upload date:
  • Size: 24.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for jutility-0.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 4332d958c7d79fa27dc0f94fed55665f832f8b432035cac402a324033c1e6c4f
MD5 f41ef55f304f375583a9c4a0ba106c5e
BLAKE2b-256 0f955753adc6c10b1d3ff0a362a4168cfdba7dd98bc425b9baa21c14d55c777a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page