Skip to main content

Kaldi alignment methods wrapped into Python

Project description

kaldialign

A small package that exposes edit distance computation functions from Kaldi. It uses the original Kaldi code and wraps it using pybind11.

Installation

conda install -c kaldialign kaldialign

or

pip install --verbose kaldialign

or

pip install --verbose -U git+https://github.com/pzelasko/kaldialign.git

or

git clone https://github.com/pzelasko/kaldialign.git
cd kaldialign
python3 -m pip install --verbose .

Examples

Alignment

align(ref, hyp, epsilon) - used to obtain the alignment between two string sequences. epsilon should be a null symbol (indicating deletion/insertion) that doesn't exist in either sequence.

from kaldialign import align

EPS = '*'
a = ['a', 'b', 'c']
b = ['a', 's', 'x', 'c']
ali = align(a, b, EPS)
assert ali == [('a', 'a'), ('b', 's'), (EPS, 'x'), ('c', 'c')]

Edit distance

edit_distance(ref, hyp) - used to obtain the total edit distance, as well as the number of insertions, deletions and substitutions.

from kaldialign import edit_distance

a = ['a', 'b', 'c']
b = ['a', 's', 'x', 'c']
results = edit_distance(a, b)
assert results == {
    'ins': 1,
    'del': 0,
    'sub': 1,
    'total': 2
}

For alignment and edit distance, you can pass sclite_mode=True to compute WER or alignments based on SCLITE style weights, i.e., insertion/deletion cost 3 and substitution cost 4.

Bootstrapping method to extract WER 95% confidence intervals

boostrap_wer_ci(ref, hyp, hyp2=None) - obtain the 95% confidence intervals for WER using Bisani and Ney boostrapping method.

from kaldialign import bootstrap_wer_ci

ref = [
    ("a", "b", "c"),
    ("d", "e", "f"),
]
hyp = [
    ("a", "b", "d"),
    ("e", "f", "f"),
]
ans = bootstrap_wer_ci(ref, hyp)
assert ans["wer"] == 0.4989
assert ans["ci95"] == 0.2312
assert ans["ci95min"] == 0.2678
assert ans["ci95max"] == 0.7301

It also supports providing hypotheses from system 1 and system 2 to compute the probability of S2 improving over S1:

from kaldialign import bootstrap_wer_ci

ref = [
    ("a", "b", "c"),
    ("d", "e", "f"),
]
hyp = [
    ("a", "b", "d"),
    ("e", "f", "f"),
]
hyp2 = [
    ("a", "b", "c"),
    ("e", "e", "f"),
]
ans = bootstrap_wer_ci(ref, hyp, hyp2)

s = ans["system1"]
assert s["wer"] == 0.4989
assert s["ci95"] == 0.2312
assert s["ci95min"] == 0.2678
assert s["ci95max"] == 0.7301

s = ans["system2"]
assert s["wer"] == 0.1656
assert s["ci95"] == 0.2312
assert s["ci95min"] == -0.0656
assert s["ci95max"] == 0.3968

assert ans["p_s2_improv_over_s1"] == 1.0

Motivation

The need for this arised from the fact that practically all implementations of the Levenshtein distance have slight differences, making it impossible to use a different scoring tool than Kaldi and get the same error rate results. This package copies code from Kaldi directly and wraps it using pybind11, avoiding the issue altogether.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kaldialign-0.9-cp312-cp312-win_amd64.whl (70.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

kaldialign-0.9-cp312-cp312-win32.whl (62.2 kB view details)

Uploaded CPython 3.12 Windows x86

kaldialign-0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (91.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

kaldialign-0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

kaldialign-0.9-cp312-cp312-macosx_10_9_universal2.whl (115.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9-cp311-cp311-win_amd64.whl (70.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

kaldialign-0.9-cp311-cp311-win32.whl (61.8 kB view details)

Uploaded CPython 3.11 Windows x86

kaldialign-0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (91.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kaldialign-0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

kaldialign-0.9-cp311-cp311-macosx_10_9_universal2.whl (113.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9-cp310-cp310-win_amd64.whl (70.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

kaldialign-0.9-cp310-cp310-win32.whl (61.7 kB view details)

Uploaded CPython 3.10 Windows x86

kaldialign-0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (91.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kaldialign-0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

kaldialign-0.9-cp310-cp310-macosx_10_9_universal2.whl (113.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9-cp39-cp39-win_amd64.whl (70.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

kaldialign-0.9-cp39-cp39-win32.whl (61.9 kB view details)

Uploaded CPython 3.9 Windows x86

kaldialign-0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (91.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kaldialign-0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

kaldialign-0.9-cp39-cp39-macosx_10_9_universal2.whl (113.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9-cp38-cp38-win_amd64.whl (70.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

kaldialign-0.9-cp38-cp38-win32.whl (61.7 kB view details)

Uploaded CPython 3.8 Windows x86

kaldialign-0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (91.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kaldialign-0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

kaldialign-0.9-cp38-cp38-macosx_10_9_universal2.whl (113.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9-cp37-cp37m-win_amd64.whl (70.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

kaldialign-0.9-cp37-cp37m-win32.whl (62.5 kB view details)

Uploaded CPython 3.7m Windows x86

kaldialign-0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (93.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kaldialign-0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (89.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

File details

Details for the file kaldialign-0.9-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b47afa3f1507f8bd206e2b6073441f190a5c25c143dab63c42da422bb326b18a
MD5 d21be27b309217d483d821d186ecc7ef
BLAKE2b-256 67fb635ae092f708c4a3840e4a2b707ddad46f4ec70da94e5f251db9e8eab6a5

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp312-cp312-win32.whl.

File metadata

  • Download URL: kaldialign-0.9-cp312-cp312-win32.whl
  • Upload date:
  • Size: 62.2 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 6be8aa7102c24b8b12fb3b0e21491551fb91ad02105fea655b749c19ca94ea4c
MD5 67ef9935e92c38717ece4627a4ff75f6
BLAKE2b-256 fc4fb7875df91682826ef4c96d38548ec037491d636abd7d49f8c924a2c03dc1

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92aff7ecd742ab3c8a026144ebb0ac611093cb0e1d6235c3f06a86371af4e0f4
MD5 f7db85d2cd6c20d8dfa2f19d9c4a5802
BLAKE2b-256 21c04cb58f402347852477d18aa6bb33300c527728aa1da8ac8f4f49643ce634

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8bdd2cc45701c14edec33c2b8466997f0997d8041fb477edf1483e0bf08e1ee6
MD5 eb823929c7b2481af13f4ab5b43b0012
BLAKE2b-256 9a3fa8fbedd00162727534d8f50f13b32b923b999f8fc1c14014ee562de2ccc2

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c68a7a53ab16c568133c421e9d9df4f3863f822efd5750cd593eefcd2c4aee9b
MD5 a122890ea574a9d105acbc7ac752b8b9
BLAKE2b-256 28633bbca1972cf3cbac7e409259a83ed7081a9b8f254c2860d604055ed598cd

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d66aac781c608bb2db0e098d217737f34f4ecaffe3898666f621bc7dfcebf343
MD5 7e996e05ca46b8e7ac649c1c9fba8989
BLAKE2b-256 62e1592ef21b2c9d903774e4c638df505669c718d9474b23082cf881e88c4a1f

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp311-cp311-win32.whl.

File metadata

  • Download URL: kaldialign-0.9-cp311-cp311-win32.whl
  • Upload date:
  • Size: 61.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1debb646d5d1b95548cdc7528201087d9591e0ba394f2346e33fb35f3bbf9c19
MD5 cc69e30c8899d6a83ecb4127b35df408
BLAKE2b-256 85b8008da8172e3c1e0c3f2a17ebbcb8ca7bedb44e6739bb2936980075fd3462

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3a5574d9b4461c27ef05d663ca277a51771889530ceaa220fed1eef4aac8c2e
MD5 c24f04b1e248c760d64bf465ad66eb48
BLAKE2b-256 b7f2fca9dc758faa79da38ab9c2a17550b855c1be2ea706196f3b2fa308d7240

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 659f8c94ed607fe697a1839fa258a3e7ca64ae30465ee7809bba36cb08b4f7e3
MD5 3d8a91b481740739099a2db59da3f484
BLAKE2b-256 4332e137a2bd85095e4effeb7f6a22afec0675e0ba6d9a7ef0dccdb2646c4d80

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 73410f7428c4d8d5aa295d31b0d23ca9f29577102e906ffedb7fca7a56213a5b
MD5 88f0139e9782dc432812c9289305a99e
BLAKE2b-256 39308d9e5237ae461f1991db1c0e3b3417bfe3cee8b7968a24b0f88cd726baba

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3acc41f414a029a462dd883609ba89eaedf56c422e564f2b62c130d1c8187863
MD5 3ed0eff8c644b1bda329f5fb0d7eb0b3
BLAKE2b-256 2a22565b247e3de15147a3c0fa0528fc108bb9a1391f18ca69fb6d6cf2efcd9c

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp310-cp310-win32.whl.

File metadata

  • Download URL: kaldialign-0.9-cp310-cp310-win32.whl
  • Upload date:
  • Size: 61.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5c2a438ac9befa24757aaf4829daeb1b655f1e25a8c9dbb094c5e7d4999491ff
MD5 9d574a978219964719d865b0f592d46e
BLAKE2b-256 11289f0855ad5256379fd6fca641208389e965a2f9c925bfddb0a02962b58bda

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31966f7962740f6566dc0e4a426e24ee2a7748f6b8abae63f809b988c32c3db6
MD5 60e7f819f6df7289fe642573ff477bc8
BLAKE2b-256 126d18cbf7369b93f1df259e6b6255dcddccf050eb1a4de1da784e9bf182f512

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5dccde71886e66c3fd6be5092407078e3a74589c6c540e2a898ebc5bf03ea545
MD5 fc9ac38dbe55c14fda0e87fad07d5ba3
BLAKE2b-256 92447ba992b46865a39b6d3e8b1feda3621b622deb42469cd4bd6270233a79d8

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 32f28c70fe0bf541175be0e1f1ae6882a51da1c336b8dd64a7210bb66c7d3778
MD5 9b1bc1378cd9be7936c013ba3ee5c663
BLAKE2b-256 8e3d370852cc0689034bec1c4944d6276d2e8ed9d3ca6f696a38aa7b557edd6a

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: kaldialign-0.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 70.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 383a0f877369b152c032f5149609ea7b4a5d8ab2daacde3795f56198f9590978
MD5 510fe404e4390e58fdff4c922320ec92
BLAKE2b-256 66cab073ce9786bc9f4936c97c8bad12604543769fbbdff2709a28c5369865d0

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp39-cp39-win32.whl.

File metadata

  • Download URL: kaldialign-0.9-cp39-cp39-win32.whl
  • Upload date:
  • Size: 61.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0cc856ff4681a6fa4108ab385f1019584d89ceb59a312ba40408a614f7323e1c
MD5 a7ccfe89ed41aaa87f0a79d746270e24
BLAKE2b-256 e780e1eb34217d72846505a658d2dcb0f87dce21b6f33b4c6fae536fac8589ff

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8dc0668afc1609ba39414a5e817a3d79d41d9e543ad9dcac42fd3c4c29f4647
MD5 22de52e4f6fe84d053a2dd5c1a4b7c49
BLAKE2b-256 5ef44dc11e6c9943cc32ef92bcdf8199e8ad80295727701dc661b25facdeae04

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16d6d19145bb9d7c99bd1cb84bc9eab486d0da3e2d8027865e1b5f4782206112
MD5 f3093070f6f77abdf36ad68df99f7ef5
BLAKE2b-256 a759d8c225cca3ac9fe1f9810733d965c81e837cda9c67851e62e4aea65408d2

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d927f3dfd157ac99b3dfd9b3c8909a275d1f9ec791dcb523ccdda22a455b87d8
MD5 eb460756f817be89cbe5a44ba56ddf00
BLAKE2b-256 3ee543f910bc2ecdb941287554e588ea0d266abe841af8c8705c0aa5afee6f31

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: kaldialign-0.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 70.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5d26ca5ce8809c138672bfb327f05bbadef02ad47a804473b8a0050d5e423a3e
MD5 6e2a8c599a8f8d139c083e8cfece5d7b
BLAKE2b-256 ffb1f13bc3a4d64ad94ac1e87b068486bad009c46cf7698a88521a9ff1b4c443

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp38-cp38-win32.whl.

File metadata

  • Download URL: kaldialign-0.9-cp38-cp38-win32.whl
  • Upload date:
  • Size: 61.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d3b9167c179afec0edf3ace3b238129ca2284a6fce7e792199ac6328aedcb104
MD5 9a3b8d1df4c82642bc323bfda692a639
BLAKE2b-256 e2c71cdf3f8deb5c6d57b6d16d09d42ab43da0a5e12fc96176ca9c162aef0ec2

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b99e61b569708af3d4ac419a9cf332488b5786872da969d09b5573c5c60dffce
MD5 12406543f3e96eb5169967eaf84083ba
BLAKE2b-256 c3a5896dad5b1b22c4288888f9550c4503256a2335d7448ba9209ed1c94e0264

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4bed52c79f8b3d9fdd7f35e9cafddacee2cd67e8fbb30b46eb9216c62cc72921
MD5 9144cc0e1cecc097b227d68caa5e0138
BLAKE2b-256 4948e9d55d68a6fe78c6255a6e8710c0f5f817b801b56eb12331819c5ab8b6d4

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 87b5d3ff04c89dcf474f7545cd3fc9e7860815e22e12288bc5b65f5702270376
MD5 0ea115cabc617843acd46572c272f451
BLAKE2b-256 e2694e2ed9c9440fb1bab4d9f8bc62297b6bdea8940933d1ceac6e3b26538ed3

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: kaldialign-0.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 70.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 214af43f4d8141dde3942a87769db10eeedf6c6dc1bd5a0122a28edcf5dc0327
MD5 baac9c8423022d03a6591a8b85ca407e
BLAKE2b-256 2260c5d44d98cfd98c92ec5f881b1e933498894939de37d44317f3df5df84ea0

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp37-cp37m-win32.whl.

File metadata

  • Download URL: kaldialign-0.9-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 62.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 73eabf98f00550b6127f15454fc61acbc91b20e514499b92505aa0129dbe24b7
MD5 7ec05c16aa98953250af79373ad29697
BLAKE2b-256 eefc82fd35ed55fc17c1fccbed98fa05512bb490fad7ae876d66a512b7a09a4f

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdc011b0d1ddc6a4be179474ef6016c7cdeff11959a49e97d2667f9674fde823
MD5 abdc0a4a6916ccfe57626be7b53d252d
BLAKE2b-256 cbe66f9ab3ae9b378d89c6fffafee5a339ed38eddd20fa80a2310a16a70f5df6

See more details on using hashes here.

File details

Details for the file kaldialign-0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 89597292f388b85b3e47a1ccb1b2ff86284adb420431b3283551f6f1762efbca
MD5 69d6d986c1c03d3aea0854310f0ad1c5
BLAKE2b-256 62f7d17353d7380b8b15f003b3e261a3f96907802beddbdbdbf8b31826b326e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page