Skip to main content

No project description provided

Project description

arpa2fst

Python wrapper for kaldi's arpa2fst.

Open In Colab

Installation

kaldilm can be installed using either conda or pip.

Using conda

conda install -c k2-fsa -c conda-forge kaldilm

Using pip

pip install kaldilm

In case it doesn't work using pip install (you can't import _kaldilm), something likely failed during the compilation of the native part of this library. The following steps will show you a more verbose log that can help diagnose the issue:

# Remove the broken version first
pip uninstall kaldilm
pip install -v --no-cache-dir kaldilm

To test that kaldilm is installed successfully, run:

$ python3 -m kaldilm --help

It should display the usage information of kaldilm.

Please create an issue on GitHub if you encounter any problems while installing kaldilm.

Usage

First, let us see the usage information of kaldi's arpa2fst:

kaldi/src/lmbin$ ./arpa2fst
./arpa2fst

Convert an ARPA format language model into an FST
Usage: arpa2fst [opts] <input-arpa> <output-fst>
 e.g.: arpa2fst --disambig-symbol=#0 --read-symbol-table=data/lang/words.txt lm/input.arpa G.fst

Note: When called without switches, the output G.fst will contain
an embedded symbol table. This is compatible with the way a previous
version of arpa2fst worked.

Options:
  --bos-symbol                : Beginning of sentence symbol (string, default = "<s>")
  --disambig-symbol           : Disambiguator. If provided (e. g. #0), used on input side of backoff links, and <s> and </s> are replaced with epsilons (string, default = "")
  --eos-symbol                : End of sentence symbol (string, default = "</s>")
  --ilabel-sort               : Ilabel-sort the output FST (bool, default = true)
  --keep-symbols              : Store symbol table with FST. Symbols always saved to FST if symbol tables are neither read or written
(otherwise symbols would be lost entirely) (bool, default = false)
  --max-arpa-warnings         : Maximum warnings to report on ARPA parsing, 0 to disable, -1 to show all (int, default = 30)
  --read-symbol-table         : Use existing symbol table (string, default = "")
  --write-symbol-table        : Write generated symbol table to a file (string, default = "")

kaldilm uses the same arguments as kaldi's arpa2fst:

$ python3 -m kaldilm --help

prints

usage: Python wrapper of kaldi's arpa2fst [-h] [--bos-symbol BOS_SYMBOL]
                                          [--disambig-symbol DISAMBIG_SYMBOL]
                                          [--eos-symbol EOS_SYMBOL]
                                          [--ilabel-sort ILABEL_SORT]
                                          [--keep-symbols KEEP_SYMBOLS]
                                          [--max-arpa-warnings MAX_ARPA_WARNINGS]
                                          [--read-symbol-table READ_SYMBOL_TABLE]
                                          [--write-symbol-table WRITE_SYMBOL_TABLE]
                                          [--max-order MAX_ORDER]
                                          input_arpa [output_fst]

positional arguments:
  input_arpa            input arpa filename
  output_fst            Output fst filename. If empty, no output file is
                        created.

optional arguments:
  -h, --help            show this help message and exit
  --bos-symbol BOS_SYMBOL
                        Beginning of sentence symbol (default = "<s>")
  --disambig-symbol DISAMBIG_SYMBOL
                        Disambiguator. If provided (e.g., #0), used on input
                        side of backoff links, and <s> and </s> are replaced
                        with epsilons (default = "")
  --eos-symbol EOS_SYMBOL
                        End of sentence symbol (default = "</s>")
  --ilabel-sort ILABEL_SORT
                        Ilabel-sort the output FST (default = true)
  --keep-symbols KEEP_SYMBOLS
                        Store symbol table with FST. Symbols always saved to
                        FST if symboltables are neither read or written
                        (otherwise symbols would be lost entirely) (default =
                        false)
  --max-arpa-warnings MAX_ARPA_WARNINGS
                        Maximum warnings to report on ARPA parsing, 0 to
                        disable, -1 to show all (default = 30)
  --read-symbol-table READ_SYMBOL_TABLE
                        Use existing symbol table (default = "")
  --write-symbol-table WRITE_SYMBOL_TABLE
                        (Write generated symbol table to a file (default = "")
  --max-order MAX_ORDER
                        Maximum order (inclusive) in the arpa file is used to
                        generate the final FST. If it is -1, all ngram data in
                        the file are used.If it is 1, only unigram data are
                        used.If it is 2, only ngram data up to bigram are
                        used.Default is -1.

It has one extra argument --max-order, which is not present in kaldi's arpa2fst.

Example usage

Suppose you have an arpa file input.arpa with the following content:

\data\
ngram 1=4
ngram 2=2
ngram 3=2

\1-grams:
-5.234679	a -3.3
-3.456783	b
0.0000000	<s> -2.5
-4.333333	</s>

\2-grams:
-1.45678	a b -3.23
-1.30490	<s> a -4.2

\3-grams:
-0.34958	<s> a b
-0.23940	a b </s>

\end\

and the word symbol table is words.txt:

<eps> 0
a 1
b 2
#0 3
<s> 4
</s> 5

Note: Numbers in the arpa file are log10(p), while numbers on arcs in OpenFst are -log(p) and it is log(p) in k2.

log(10) = 2.3026

log10(p) p log(p) note
-5.234679 0.000006 -12.053294 log(p) = log10(p) * log(10), -12.053294 = 2.3026 * (-5.234679)
-3.300000 0.000501 -7.598531
-3.456783 0.000349 -7.959537
0.000000 1.000000 0.000000
-2.500000 0.003162 -5.756463
-4.333333 0.000046 -9.977868
-1.456780 0.034932 -3.354360
-3.230000 0.000589 -7.437350
-1.304900 0.049556 -3.004643
-4.200000 0.000063 -9.670856
-0.349580 0.447116 -0.804938
-0.239400 0.576235 -0.551239

Caution: All symbols with ID >= the ID of #0 are set to <eps> during compiling HLG. See https://github.com/k2-fsa/icefall/blob/243fb9723cb82287ec5a891155ab9e0bc304740d/egs/librispeech/ASR/local/compile_hlg.py#L103 If IDs of <s> and </s> are less than that of #0, the resulting HLG is problematic.

You can use the following code to convert it into an FST.

3-gram

This uses all n-gram data inside the arpa file.

  python3 -m kaldilm \
    --read-symbol-table="./words.txt" \
    --disambig-symbol='#0' \
    ./input.arpa > G_fst.txt

The resulting G_fst.txt is shown in the following

3	5	1	1	3.00464
3	0	3	0	5.75646
0	1	1	1	12.0533
0	2	2	2	7.95954
0	9.97787
1	4	2	2	3.35436
1	0	3	0	7.59853
2	0	3	0
4	2	3	0	7.43735
4	0.551239
5	4	2	2	0.804938
5	1	3	0	9.67086

which can be visualized in k2 using

import k2
with open('G_fst.txt') as f:
  G = k2.Fsa.from_openfst(f.read(), acceptor=False)
G.labels_sym = k2.SymbolTable.from_file('words.txt')
G.aux_labels_sym = k2.SymbolTable.from_file('words.txt')
#G.labels[G.labels >= 3] = 0 # convert symbols with ID >= ID of #0 to eps
G.draw('G.svg', title='G')

G.svg is shown below:

G.svg

1-gram

It uses only uni-gram data inside the arpa file since --max-order=1 is used.

  python3 -m kaldilm \
    --read-symbol-table="./words.txt" \
    --disambig-symbol='#0' \
    --max-order=1 \
    ./input.arpa > G_uni_fst.txt

The generated G_uni_fst.txt is

3	0	3	0	5.75646
0	1	1	1	12.0533
0	2	2	2	7.95954
0	9.97787
1	0	3	0	7.59853
2	0	3	0

which can be visualized in k2 using

with open('G_uni_fst.txt') as f:
  G = k2.Fsa.from_openfst(f.read(), acceptor=False)
G.labels_sym = k2.SymbolTable.from_file('words.txt')
G.aux_labels_sym = k2.SymbolTable.from_file('words.txt')
#G.labels[G.labels >= 3] = 0 # convert symbols with ID >= ID of #0 to eps
G.draw('G_uni.svg', title='G_uni')

G_uni.svg is shown below:

G_uni.svg

What's more

Please refer to https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh for how kaldilm is used in icefall.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kaldilm-1.15.1.tar.gz (49.0 kB view details)

Uploaded Source

Built Distributions

kaldilm-1.15.1-cp311-cp311-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

kaldilm-1.15.1-cp311-cp311-win32.whl (970.5 kB view details)

Uploaded CPython 3.11 Windows x86

kaldilm-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kaldilm-1.15.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

kaldilm-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

kaldilm-1.15.1-cp311-cp311-macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

kaldilm-1.15.1-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

kaldilm-1.15.1-cp310-cp310-win32.whl (970.3 kB view details)

Uploaded CPython 3.10 Windows x86

kaldilm-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kaldilm-1.15.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

kaldilm-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

kaldilm-1.15.1-cp310-cp310-macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

kaldilm-1.15.1-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

kaldilm-1.15.1-cp39-cp39-win32.whl (970.6 kB view details)

Uploaded CPython 3.9 Windows x86

kaldilm-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kaldilm-1.15.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

kaldilm-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

kaldilm-1.15.1-cp39-cp39-macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

kaldilm-1.15.1-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

kaldilm-1.15.1-cp38-cp38-win32.whl (970.5 kB view details)

Uploaded CPython 3.8 Windows x86

kaldilm-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kaldilm-1.15.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

kaldilm-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

kaldilm-1.15.1-cp38-cp38-macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

kaldilm-1.15.1-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

kaldilm-1.15.1-cp37-cp37m-win32.whl (970.8 kB view details)

Uploaded CPython 3.7m Windows x86

kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

kaldilm-1.15.1-cp36-cp36m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

kaldilm-1.15.1-cp36-cp36m-win32.whl (970.6 kB view details)

Uploaded CPython 3.6m Windows x86

kaldilm-1.15.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

kaldilm-1.15.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

File details

Details for the file kaldilm-1.15.1.tar.gz.

File metadata

  • Download URL: kaldilm-1.15.1.tar.gz
  • Upload date:
  • Size: 49.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for kaldilm-1.15.1.tar.gz
Algorithm Hash digest
SHA256 5227389fbb5f6feee87404e2556d3527229ce5bab76c93d1a5ea1f1336da7576
MD5 419fd24ad8cd0d9fbbc375add9e95b1c
BLAKE2b-256 f355573a7e53d69418513a9faa33122116a2b59ba4b9dc574e9449017ffc7464

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b79437189d330c68e40872c0ae59e00b6d885b272fd34b1bb9ed1c3ebfb7c3b8
MD5 6f5518158c1ba5578b0624aa08a8fe46
BLAKE2b-256 7b50aad74f7f44e35917feef6b986072352e19089b01012962095917c02d8079

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 970.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1fce7a2744c0a9d9650c7987ff112e3393387d4026c5d8d5ced148f2a00bc382
MD5 b11adb8c35bec5689fa534be0725ee2e
BLAKE2b-256 97ef56b14ffea79bae705f9507d3cf488377e6a1b3d2209760d2f0a91ba61b23

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76adcf4b73443c032217cd13eb6c8ff135acc0d7806b20d311a83000df0392f8
MD5 e9a7da7de9c8c5ef825b4880137b381c
BLAKE2b-256 0a0dc9c82cb31b5860a1a22ec4821d3fdd40e5786a357a78ea176ca7c91cf4ca

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6917c5a03994603eecd39f590366cda4c77377fce83c3487e55e6577c90fd379
MD5 9349286f2484a17fc9fb43553c66706b
BLAKE2b-256 ec93dc350632c9b4d6a2245505b2f5c5ed1e72a860e34a0b3a4ce1bf6e0255b6

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f5587c64d4287a94912a22ac358aea624515b1af9ffaa4f41b0adb505899e16
MD5 2c66e22b583cbf1446dd3e5aa6c7a858
BLAKE2b-256 c5a861d74fce0e5ba0b562f7b925153755d09d09096e6c705b5a42a164e47dc3

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9ddc3a85f8bcf16803315d2788b8c44088e6d05bd56cdcef746b51ff7ba1c6a3
MD5 92590129337e3a83e94ef8d589ab8086
BLAKE2b-256 9871915cb1edee4d2ddcb30736f88081730fd6ed99036b7e56946af0521a5428

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 60fa399ba59284793fddc066387d235a6d87a9ba2847179b98d2d002de2ccf42
MD5 67c932d7b423ffeb40c8a2143be56fa6
BLAKE2b-256 9f075066dd70362f45e27955d7a253f93dda602413920a1b588f194cdf442614

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 970.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 552be250e4866517dc4537b50a49a6c87eb61bc4e07a0e60d3f047b2d714ca52
MD5 b9ec5c1153653043544304654e2e248f
BLAKE2b-256 e31b48ff0a311742bb12476543f9f0a0554ad7ce939ce1a0e832f4b8802a0b7a

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a73e69a661918a57d09f22de524b075ac1d57dd7e6a639d06e0df20d88d9d584
MD5 f889a25c8d7f7a26f5b5fb97a9b7502d
BLAKE2b-256 54c871c49d99c5e0fbb84a686d791033ec3ba9154abcc27bc0e9630a7b03e4f0

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9df2ecb6021191e0bc0ffa63c65884dbf64e19072a765d6ef48864844fb6ed45
MD5 ef42c80ec32904d8b74e6ef20867531b
BLAKE2b-256 bb5ed7d31a5db81732ad29c01a737f67b279ce17be5e1668b4b7351eca0d9772

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 49291901b43201a9c394faf1ac3b994c2b37fd4ba9853d4f242a76960cbfc348
MD5 3d9fbf129c6ec8414ac63dde5cf37d3d
BLAKE2b-256 c6e83a47f6e9ad0bd33caa39c419bed5dcb40df48d72a8bee610be3d0a938da3

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 465995ef34badbe24c138374f6a750bd3667797b0d94c5f24db56e06d2de2050
MD5 79dd92826a233612c78d1682daf7bc58
BLAKE2b-256 0519819c446db30b2d2782f180312cf5395b7520fce31182a248c753367018d7

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fb53f3d67b3ed66f3f9d9866096b797908f1a18b012dc6a0d68168639427d3c6
MD5 05bef1a43951722c573e855a358844a0
BLAKE2b-256 7960e4b1f854e86109041deb191c92318ffcc30bee2f292666296f51e559b569

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 970.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cb97d5effeadf68045bade66007088a1faf5ac96bc7c64cd0301c5cdd5495046
MD5 3dea0d41f425bcf9da9e29c781838f2b
BLAKE2b-256 ea0ebcf9f04e506211e2fb74ad50172fb9280f5280dbf2feea309d0df62a4039

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79caa7838a9191ef86b45eb096c5e977dbe253479c22bd6be0fb73c56077d9df
MD5 44cf2e11ad7e894cc3833e26f9f2eec5
BLAKE2b-256 208436f4a3f3d6b59961230bc73fe12b4e7069f5c4743071964489b8ca9ec8ea

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0bcdd89b2b2513bc1edb0d3d5dbe00d78f3ca000292e87a15cb881343fb91549
MD5 841b629a85f88c0df5ad6923f08357c8
BLAKE2b-256 0abeaf83eb1dda5340ef450853a6fefcdc2f99bcb8cddb98c7231195fe4ed640

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f530a688c46d6c248747a602135cfe85ca1c06afcc0bf47c4b3f97ecbc3210d4
MD5 592269aa2d1944a03e257bd075640d7c
BLAKE2b-256 9d2741b0c6c3f2adba0d592e9e42d7ad914e53a2f7b4dcc93aeffd54cd01d4fc

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 98f2b0db38d593003508d79a9034c5b15e0c8b2a3a272d6a5f97870e81ba24fe
MD5 5500f426858a72d9690a2fe9066d8540
BLAKE2b-256 6096e074e8693ec51058e9230ee6c0a2f179465d7a62fcdf63d3fd26b2bb78e7

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a6af5c425b2ccd489a6ab66ad8a26902d7d7441e67a2c0c551c90603d33b59ce
MD5 210408b4a0fe465d803a583f804eec69
BLAKE2b-256 cffab0d5c0c86c3610036cef62278254123a8f57e0ccb4a4efa8fe767a37dce6

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 970.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d71505c07fd2818cd472e0576e3e2d9624b73216ece64bb93ae84e25e780257d
MD5 45c559b16e0b167b2efdf71bb96d802e
BLAKE2b-256 0684dd2a78924c01d3f1ffdc62e3a3ccacf2396e6dfea8bfbe820340238d7995

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4072bfe910371bc1c7249ac7ef6cbdf06b5dfcfc53e6f614568ce7758edaea69
MD5 dc31a4e8d104a4e47f456ceb3b40983d
BLAKE2b-256 50580c909e2fbea88e5e8de774533e373456287450f822cdbc9fa4fc1f98addd

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e76828ebd633cc494a02f78b19ee4068fca3fb3732919a99393d831e33495b4
MD5 acff77f130b2d4042310d466549e67ec
BLAKE2b-256 d4d627e28320acdc01ffdffa64922187dd54c8d351651c670f3105ee554d08ed

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 012e5381b2c5964879aa468c6f5bbed8816db3716021c98c4c4009a99c0c8296
MD5 b54a1d7257d93e523eb523400ae0d08a
BLAKE2b-256 6a82b1e42c232a75772f9b946a5ac3bc6fee9268692ec766c2a36462b0b16802

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 991a9451e3eaef78d44e06ccfc7b2901bf4f8e05d0fe2dbfbcf03a2546f167b8
MD5 c8dae71d9302a4c7cbaffd5075a877bb
BLAKE2b-256 4b57f38df7f0edaf0c83d65e683852a3fd529747e72f21177de6ae95aa45f92c

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 936c4f2d08e4e5a686c1f5f102e158a6dea64385225629820ec58a458d79fd28
MD5 0f911704b1fd11af657a49d885e07cea
BLAKE2b-256 399b78ecfe472b41abec7f415eada0267f50628aa65fa7cc7542671986a69317

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 970.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7e2ebc58e7c22b62b73cab82c96aed46b9ba16d337ab405029fe4dc5948801f7
MD5 f911edc6da54ccd6b5705541338ad000
BLAKE2b-256 5f0445884efdc63281d91c3cb2aedfbc8090323f7a7845706e9badce4f88abb2

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6be903bc66e8825877634ca60c8eb69b8a0e534d59724558d21298d3dfb1de9e
MD5 9cdf5b1f215c6dbd91d2fea361c050e2
BLAKE2b-256 2cf23cb60d8782221a9fa058345ebc09377aa9dfadd2c8aef10ef9fcc8ccb2cf

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 090294e7eece405118d10898b12dffcea1fcd743ff39ef25c2c29b12ae483d17
MD5 d3edbecdf722025bd3219b0db1793501
BLAKE2b-256 062dd1e6312d3004414890ff73101420c02086475d9184e59560aba1ccabfeeb

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2307e8ee1eb67b8a1a6652241610f9b688fa8ae92e8f79c09692f6c53d55227a
MD5 6715132bcdc86f2052d134180a66be7a
BLAKE2b-256 e328a231357977dca30fb9d575e52869f46b8fd5e1eceafe479cad29fe3b7543

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0b4648213c71cf87ae817fc9e41df9aa947917031596baea3be5f47d2f20a77c
MD5 7d30ba4cbf4110e0abf79cabc9733ba0
BLAKE2b-256 eacb1a9f46b22b20d6d9242b057b0b5a5c059dd51825911c54109e307d19e2dc

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: kaldilm-1.15.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 970.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for kaldilm-1.15.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 33776618856ffcf2793e5adc90d3f78759c01c1997a5473826bcda94f6fbca6f
MD5 0430646c1cded070cec185bfc52182e3
BLAKE2b-256 3465e7657957a507cd59f61544ea6ee3bd0c623482a92061c91d3dfea31e0415

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 489a268d333206c9b7813961d5dbc44ee806808bbd631a0bd62aba0a16b4d4a3
MD5 9f911da8b168969f2d1df4d8811be4bf
BLAKE2b-256 c7acf369b053e8d810abc26f0b38bdc59d8d93212a35676b60f442a25cf017c7

See more details on using hashes here.

File details

Details for the file kaldilm-1.15.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for kaldilm-1.15.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 254a6e03665a7c5405df03421c15bc70c0069cd74393147be8e30900b322fdae
MD5 fd4b5d0de44e4aad2efbe1a5e9296ba1
BLAKE2b-256 1b0de85b2051e0138bdf9514cc77ece8a433056e7c19b73f86f2e2b0f998729a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page