Skip to main content

An MDN Layer for Keras using TensorFlow's distributions module

Project description

Keras Mixture Density Network Layer

Build and test keras-mdn-layer MIT License DOI PyPI version

A mixture density network (MDN) Layer for Keras using TensorFlow's distributions module. This makes it a bit more simple to experiment with neural networks that predict multiple real-valued variables that can take on multiple equally likely values.

This layer can help build MDN-RNNs similar to those used in RoboJam, Sketch-RNN, handwriting generation, and maybe even world models. You can do a lot of cool stuff with MDNs!

One benefit of this implementation is that you can predict any number of real-values. TensorFlow's Mixture, Categorical, and MultivariateNormalDiag distribution functions are used to generate the loss function (the probability density function of a mixture of multivariate normal distributions with a diagonal covariance matrix). In previous work, the loss function has often been specified by hand which is fine for 1D or 2D prediction, but becomes a bit more annoying after that.

Two important functions are provided for training and prediction:

  • get_mixture_loss_func(output_dim, num_mixtures): This function generates a loss function with the correct output dimensiona and number of mixtures.
  • sample_from_output(params, output_dim, num_mixtures, temp=1.0): This functions samples from the mixture distribution output by the model.

Installation

This project requires Python 3.6+, TensorFlow and TensorFlow Probability. You can easily install this package from PyPI via pip like so:

python3 -m pip install keras-mdn-layer

And finally, import the module in Python: import keras_mdn_layer as mdn

Alternatively, you can clone or download this repository and then install via python setup.py install, or copy the mdn folder into your own project.

Examples

Some examples are provided in the notebooks directory.

There's scripts for fitting multivalued functions, a standard MDN toy problem:

Keras MDN Demo

There's also a script for generating fake kanji characters:

kanji test 1

And finally, for learning how to generate musical touch-screen performances with a temporal component:

Robojam Model Examples

How to use

The MDN layer should be the last in your network and you should use get_mixture_loss_func to generate a loss function. Here's an example of a simple network with one Dense layer followed by the MDN.

from tensorflow import keras
import keras_mdn_layer as mdn

N_HIDDEN = 15  # number of hidden units in the Dense layer
N_MIXES = 10  # number of mixture components
OUTPUT_DIMS = 2  # number of real-values predicted by each mixture component

model = keras.Sequential()
model.add(keras.layers.Dense(N_HIDDEN, batch_input_shape=(None, 1), activation='relu'))
model.add(mdn.MDN(OUTPUT_DIMS, N_MIXES))
model.compile(loss=mdn.get_mixture_loss_func(OUTPUT_DIMS,N_MIXES), optimizer=keras.optimizers.Adam())
model.summary()

Fit as normal:

history = model.fit(x=x_train, y=y_train)

The predictions from the network are parameters of the mixture models, so you have to apply the sample_from_output function to generate samples.

y_test = model.predict(x_test)
y_samples = np.apply_along_axis(sample_from_output, 1, y_test, OUTPUT_DIMS, N_MIXES, temp=1.0)

See the notebooks directory for examples in jupyter notebooks!

Load/Save Model

Saving models is straight forward:

model.save('test_save.h5')

But loading requires cutom_objects to be filled with the MDN layer, and a loss function with the appropriate parameters:

m_2 = keras.models.load_model('test_save.h5', custom_objects={'MDN': mdn.MDN, 'mdn_loss_func': mdn.get_mixture_loss_func(1, N_MIXES)})

Acknowledgements

References

  1. Christopher M. Bishop. 1994. Mixture Density Networks. Technical Report NCRG/94/004. Neural Computing Research Group, Aston University. http://publications.aston.ac.uk/373/
  2. Axel Brando. 2017. Mixture Density Networks (MDN) for distribution and uncertainty estimation. Master’s thesis. Universitat Politècnica de Catalunya.
  3. A. Graves. 2013. Generating Sequences With Recurrent Neural Networks. ArXiv e-prints (Aug. 2013). https://arxiv.org/abs/1308.0850
  4. David Ha and Douglas Eck. 2017. A Neural Representation of Sketch Drawings. ArXiv e-prints (April 2017). https://arxiv.org/abs/1704.03477
  5. Charles P. Martin and Jim Torresen. 2018. RoboJam: A Musical Mixture Density Network for Collaborative Touchscreen Interaction. In Evolutionary and Biologically Inspired Music, Sound, Art and Design: EvoMUSART ’18, A. Liapis et al. (Ed.). Lecture Notes in Computer Science, Vol. 10783. Springer International Publishing. DOI:10.1007/9778-3-319-77583-8_11

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras_mdn_layer-0.4.0.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

keras_mdn_layer-0.4.0-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file keras_mdn_layer-0.4.0.tar.gz.

File metadata

  • Download URL: keras_mdn_layer-0.4.0.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.3 Darwin/23.4.0

File hashes

Hashes for keras_mdn_layer-0.4.0.tar.gz
Algorithm Hash digest
SHA256 03009d7631ee9d596087627b67a8aab68c5914934c6ab3652f01bbc18abfd8fb
MD5 70c443fc997e935c2ff8bd6420bf6e98
BLAKE2b-256 3dc4ba674f6dd407ae47f2a823ed7b1e8a7601f4b9b9c5f6b0822259f3b524fd

See more details on using hashes here.

File details

Details for the file keras_mdn_layer-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: keras_mdn_layer-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.3 Darwin/23.4.0

File hashes

Hashes for keras_mdn_layer-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 983a553bb7ef600a6df076f97727a4fdaa861653ff44ada76259525a5483b9bd
MD5 30b5b8c66c54e9687676bc34d2bf8135
BLAKE2b-256 043debe868cde0b0377321ae04449a8f7b38f5d088a9fb2dd34aee9fc3483acc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page