Targeted dropout implemented in Keras
Project description
Implementation of Targeted Dropout with tensorflow backend.
Install
pip install keras-targeted-dropout
Usage
import keras
from keras_targeted_dropout import TargetedDropout
model = keras.models.Sequential()
model.add(TargetedDropout(input_shape=(None, None), drop_rate=0.4, target_rate=0.4))
model.compile(optimizer='adam', loss='mse')
model.summary()
drop_rate: Dropout rate for each pixel.
target_rate: The proportion of bottom weights selected as candidates per channel.
The final dropout rate will be drop_rate times target_rate.
See Fashion MNIST demo.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Close
Hashes for keras-targeted-dropout-0.3.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 70c05bebe2bc64ef20528d9159546f51f3a51cc3c3cd1c0ff847cfc17937ee51 |
|
MD5 | 7d5f1df4e87defa2d89f4231551447d8 |
|
BLAKE2b-256 | 05161efce37c00d091772ed84dbffb76b97c37ba5636054c1755f57ecd64d087 |