Light/easy keyword extraction.
Project description
Kex
Kex is a python library for unsurpervised keyword extractions:
- Easy interface for keyword extraction with a variety of algorithms
- Quick benchmarking over 15 English public datasets
- Custom keyword extractor implementation support
Get Started
Install via pip
pip install kex
Extract Keywords with kex
Built-in algorithms in kex is below:
FirstN
: heuristic baseline to pick up first n phrases as keywordsTF
: scoring by term frequencyTFIDF
: scoring by TFIDFLexSpec
: scoring by lexical specificityTextRank
: Mihalcea et al., 04SingleRank
: Wan et al., 08TopicalPageRank
: Liu et al.,10SingleTPR
: Sterckx et al.,15TopicRank
: Bougouin et al.,13PositionRank
: Florescu et al.,18TFIDFRank
: SingleRank + TFIDF based population termLexRank
: SingleRank + lexical specificity based population term
Basic usage:
>>> import kex
>>> model = kex.SingleRank() # any algorithm listed above
>>> sample = '''
We propose a novel unsupervised keyphrase extraction approach that filters candidate keywords using outlier detection.
It starts by training word embeddings on the target document to capture semantic regularities among the words. It then
uses the minimum covariance determinant estimator to model the distribution of non-keyphrase word vectors, under the
assumption that these vectors come from the same distribution, indicative of their irrelevance to the semantics
expressed by the dimensions of the learned vector representation. Candidate keyphrases only consist of words that are
detected as outliers of this dominant distribution. Empirical results show that our approach outperforms state
of-the-art and recent unsupervised keyphrase extraction methods.
'''
>>> model.get_keywords(sample, n_keywords=2)
[{'stemmed': 'non-keyphras word vector',
'pos': 'ADJ NOUN NOUN',
'raw': ['non-keyphrase word vectors'],
'offset': [[47, 49]],
'count': 1,
'score': 0.06874471825637762,
'n_source_tokens': 112},
{'stemmed': 'semant regular word',
'pos': 'ADJ NOUN NOUN',
'raw': ['semantic regularities words'],
'offset': [[28, 32]],
'count': 1,
'score': 0.06001468574146248,
'n_source_tokens': 112}]
Compute a prior
Algorithms such as TF
, TFIDF
, TFIDFRank
, LexSpec
, LexRank
, TopicalPageRank
, and SingleTPR
need to compute
a prior distribution beforehand:
>>> import kex
>>> model = kex.SingleTPR()
>>> test_sentences = ['documentA', 'documentB', 'documentC']
>>> model.train(test_sentences, export_directory='./tmp')
Priors are cached and can be loaded on the fly:
>>> import kex
>>> model = kex.SingleTPR()
>>> model.load('./tmp')
Supported language
Currently algorithms are available only in English, but soon we will relax the constrain to allow other language to be supported.
Benchmark on 15 Public Datasets
Users can fetch 15 public keyword extraction datasets via kex.get_benchmark_dataset
.
>>> import kex
>>> json_line, language = kex.get_benchmark_dataset('Inspec', keep_only_valid_label=False)
>>> json_line[0]
{
'keywords': ['kind infer', 'type check', 'overload', 'nonstrict pure function program languag', ...],
'source': 'A static semantics for Haskell\nThis paper gives a static semantics for Haskell 98, a non-strict ...',
'id': '1053.txt'
}
High level statistics of each dataset can be found here, and the benchmark results below:
A prior distributions are computed within each dataset, and complexity is an average over 100 trial on Inspec dataset. To reproduce the above benchmark results, please take a look an example script.
Implement Custom Extractor with kex
We provide an API to run a basic pipeline for preprocessing, by which one can implement a custom keyword extractor.
import kex
class CustomExtractor:
""" Custom keyword extractor example: First N keywords extractor """
def __init__(self, maximum_word_number: int = 3):
""" First N keywords extractor """
self.phrase_constructor = kex.PhraseConstructor(maximum_word_number=maximum_word_number)
def get_keywords(self, document: str, n_keywords: int = 10):
""" Get keywords
Parameter
------------------
document: str
n_keywords: int
Return
------------------
a list of dictionary consisting of 'stemmed', 'pos', 'raw', 'offset', 'count'.
eg) {'stemmed': 'grid comput', 'pos': 'ADJ NOUN', 'raw': ['grid computing'], 'offset': [[11, 12]], 'count': 1}
"""
phrase_instance, stemmed_tokens = self.phrase_constructor.tokenize_and_stem_and_phrase(document)
sorted_phrases = sorted(phrase_instance.values(), key=lambda x: x['offset'][0][0])
return sorted_phrases[:min(len(sorted_phrases), n_keywords)]
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file kex-1.0.1.tar.gz
.
File metadata
- Download URL: kex-1.0.1.tar.gz
- Upload date:
- Size: 19.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ac528aefb6787e56d110c14a823bf24bc127b5f69569fc97ec1ee5c4ce69275 |
|
MD5 | 75f7311d282836f0ab98ea8a3357db4d |
|
BLAKE2b-256 | 2cead8e39ff3555bbcad71e00f945ff5f5d299359280ccbd8b8eae8c1f3ded39 |