No project description provided
Project description
My LLM Utilities
About The Project
個人工具箱,便於生成式AI的開發探索。私人研究,與工作無關,來窺伺動靜的人請自行退去。
2024-02-19
修改專案及套件名稱
Built With
Getting Started
本節說明如何建置本專案, 以及如何將建置成果供用戶使用.
Prerequisites
開發環境需要先安裝好Python和poetry
-
pyenv
curl https://pyenv.run | bash
-
Python
pyenv install 3.11
-
poetry
curl -sSL https://install.python-poetry.org | python3 -
-
Virtual environment
poetry install poetry shell
Development
see How to upload your python package to PyPi
使用 Poetry
-
Virtual environment
poetry shell
-
Test
pytest
-
Build
poetry build
-
Upload
poetry publish --username=__token__ --password=pypi token值
手動執行 setuptools
-
Virtual environment
source .venv/bin/activate
-
Test
pytest
-
Github Release
建立並發布git tag
git tag -a 0.1.1 -m "adjust config file content layout" git push origin 0.1.1
然後到Github倉庫頁面建立一個新的release
複製Assets中Source code(.tar.gz)的URL, 把它貼到setup.py裡的download_url中
-
Build
python3 setup.py sdist python3 setup.py clean --all
-
Upload
PyPi不再允許在上傳過程中用個人帳號密碼做為身份驗證方式, 參考Hackmd記錄。 在上傳過程中要求認證的時候, 以"token"做為username, 以該檔案中的token值做為密碼
twine upload dist/*
Usage
完成建置並推送到PyPi server後, 就可以在其它專案中將它設為相依套件, 並在程式碼中使用.
- 相依套件
Poetry: 在 pyproject.toml 填入
khu_llm_toolkit = "^0.1.6"
Pip: 在 requirements.txt 填入
khu_llm_toolkit >= 0.1.6
- 匯入套件
from khu_llm_toolkit import ModelDefinition
from khu_llm_toolkit.commons import ProviderType
config_file_path = os.path.join(os.getcwd(), f"instance/model_definition.ini")
model_def = ModelDefinition(ProviderType.AZURE, config_file_path)
llm, embeddings = model_def.get_models(temperature=temperature)
- 設定檔範例
[DEFAULT]
[openai]
USE_AZURE = False
API_KEY = OPENAI_API_KEY
CHAT_COMPLETIONS_MODEL = gpt-4-0613
EMBEDDINGS_MODEL = text-embedding-ada-002
[azure]
USE_AZURE = True
API_KEY = AZURE_OPENAI_API_KEY
API_BASE = AZURE_OPENAI_API_ENDPOINT_URL
API_VERSION = 2023-05-15
COMPLETIONS_MODEL = gpt-35-turbo
EMBEDDINGS_MODEL = text-embedding-ada-002
Roadmap
- 支援 Gemini (0.1.7 2024-04-25)
- 一設定檔,多模型 (0.1.7 2024-04-25)
- 支援 Huggingface上的開源模型
See the open issues for a full list of proposed features (and known issues).
License
Distributed under the MIT License. See LICENSE.txt
for more information.
Contact
Ken Hu - kenhu@duck.com
Project Link: https://github.com/kenhutaiwan/MyLlmUtils
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file khu_llm_toolkit-0.1.7a0.tar.gz
.
File metadata
- Download URL: khu_llm_toolkit-0.1.7a0.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.11.8 Linux/6.6.10-76060610-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 52db83371e927ad281c6526128d5a3cfc39d236e432e5daf8bc6feb13031bb6b |
|
MD5 | 9ad6d538b70854dfe3b9ac3241a19262 |
|
BLAKE2b-256 | 05df33049c11eea7576ee7c3b3df46073228e889a10937a3f749406079d0b5a1 |
File details
Details for the file khu_llm_toolkit-0.1.7a0-py3-none-any.whl
.
File metadata
- Download URL: khu_llm_toolkit-0.1.7a0-py3-none-any.whl
- Upload date:
- Size: 8.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.11.8 Linux/6.6.10-76060610-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 38daacf496984163a4f33c84604370f689eeb248028250d5c104b2d58f4b4f77 |
|
MD5 | 5041c42e8f80719beddd8281cafd47a0 |
|
BLAKE2b-256 | 9f593f825b849089b44ac36c7828e72861431eb11ce254b01717204c428f1b54 |