Skip to main content

Kindle - Making a PyTorch model easier than ever!

Project description

Kindle - Making a PyTorch model easier than ever!

PyPI - Python Version PyTorch Version GitHub Workflow Status PyPI LGTM Alerts

Documentation
API reference

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? when we can simply build a model with yaml markup file.

Kindle builds a model with yaml file which its method is inspired from YOLOv5.

Contents

Installation

Install with pip

PyTorch is required prior to install. Please visit PyTorch installation guide to install.

You can install kindle by pip.

$ pip install kindle

Install kindle for PyTorch under 1.7.1 (not tested)

pip install kindle --no-deps
pip install tqdm ptflops timm tabulate einops

Install from source

Please visit Install from source wiki page

For contributors

Please visit For contributors wiki page

Usage

Build a model

  1. Make model yaml file
input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    [
        [-1, 1, Conv, [6, 5, 1, 0], {activation: LeakyReLU}],
        [-1, 1, MaxPool, [2]],
        [-1, 1, nn.Conv2d, [16, 5, 1, 2], {bias: False}],
        [-1, 1, nn.BatchNorm2d, []],
        [-1, 1, nn.ReLU, []],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
    ]

head:
  [
      [-1, 1, Linear, [10]]
  ]
  1. Build the model with kindle
from kindle import Model

model = Model("model.yaml"), verbose=True)
idx |       from |   n |   params |          module |                           arguments | in_channel | out_channel |        in shape |       out shape |
----------------------------------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |      616 |            Conv | [6, 5, 1, 0], activation: LeakyReLU |          3 |           8 |     [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |        0 |         MaxPool |                                 [2] |          8 |           8 |       [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |    3,200 |       nn.Conv2d |          [16, 5, 1, 2], bias: False |          8 |          16 |       [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |       32 |  nn.BatchNorm2d |                                  [] |         16 |          16 |      [16 16 16] |    [16, 16, 16] |
  4 |         -1 |   1 |        0 |         nn.ReLU |                                  [] |         16 |          16 |      [16 16 16] |    [16, 16, 16] |
  5 |         -1 |   1 |        0 |         MaxPool |                                 [2] |         16 |          16 |      [16 16 16] |      [16, 8, 8] |
  6 |         -1 |   1 |        0 |         Flatten |                                  [] |         -1 |        1024 |        [16 8 8] |          [1024] |
  7 |         -1 |   1 |  123,000 |          Linear |                       [120, 'ReLU'] |       1024 |         120 |          [1024] |           [120] |
  8 |         -1 |   1 |   10,164 |          Linear |                        [84, 'ReLU'] |        120 |          84 |           [120] |            [84] |
  9 |         -1 |   1 |      850 |          Linear |                                [10] |         84 |          10 |            [84] |            [10] |
Model Summary: 20 layers, 137,862 parameters, 137,862 gradients

AutoML with Kindle

Supported modules

Module Components Arguments
Conv Conv -> BatchNorm -> Activation [out_channels, kernel_size, stride, padding, groups, activation]
DWConv DWConv -> BatchNorm -> Activation [out_channels, kernel_size, stride, padding, activation]
Focus Reshape x -> Conv -> Concat [out_channels, kernel_size, stride, padding, activation]
Bottleneck Expansion ConvBNAct -> ConvBNAct [out_channels, shortcut, groups, expansion, activation]
BottleneckCSP CSP Bottleneck [out_channels, shortcut, groups, expansion, activation]
C3 CSP Bottleneck with 3 Conv [out_channels, shortcut, groups, expansion, activation]
MV2Block MobileNet v2 block [out_channels, stride, expand_ratio, activation]
AvgPool Average pooling [kernel_size, stride, padding]
MaxPool Max pooling [kernel_size, stride, padding]
GlobalAvgPool Global Average Pooling []
SPP Spatial Pyramid Pooling [out_channels, [kernel_size1, kernel_size2, ...], activation]
SPPF Spatial Pyramid Pooling - Fast [out_channels, kernel_size, activation]
Flatten Flatten []
Concat Concatenation [dimension]
Linear Linear [out_channels, activation]
Add Add []
UpSample UpSample []
Identity Identity []
YamlModule Custom module from yaml file ['yaml/file/path', arg0, arg1, ...]
nn.{module_name} PyTorch torch.nn.* module Please refer to https://pytorch.org/docs/stable/nn.html
Pretrained timm.create_model [model_name, use_feature_maps, features_only, pretrained]
PreTrainedFeatureMap Bypass feature layer map from Pretrained [feature_idx]
YOLOHead YOLOv5 head module [n_classes, anchors, out_xyxy]
MobileViTBlock MobileVit Block(experimental) [conv_channels, mlp_channels, depth, kernel_size, patch_size, dropout, activation]

Custom module support

Custom module with yaml

Custom module from source code

Pretrained model support

Model profiler

Test Time Augmentation

Recent changes

Version Description Date
0.4.16 Fix decomposed conv fuse and add kindle version variable. 2021. 10. 25
0.4.14 Add MobileViTBlock module 2021. 10. 18
0.4.12 Add MV2Block module 2021. 10. 14
0.4.11 Add SPPF module in yolov5 v6.0 2021. 10. 13
0.4.10 Fix ONNX export padding issue. 2021. 10. 13
0.4.6 Add YOLOHead to choose coordinates format. 2021. 10. 09
0.4.5 Add C3 Module 2021. 10. 08
0.4.4 Fix YOLOHead module issue with anchor scaling 2021. 10. 08
0.4.2 Add YOLOModel, and ConvBN fusion, and Fix activation apply issue 2021. 09. 19
0.4.1 Add YOLOHead, SPP, BottleneckCSP, and Focus modules 2021. 09. 13
0.3.2 Fix PreTrained to work without PreTrainedFeatureMap 2021. 06. 03
0.3.1 Calculating MACs in profiler 2021. 05. 02
0.3.0 Add PreTrained support 2021. 04. 20

Planned features

  • Custom module support
  • Custom module with yaml support
  • Use pre-trained model
  • Graphical model file generator
  • Ensemble model
  • More modules!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kindle-0.4.16.tar.gz (32.5 kB view details)

Uploaded Source

Built Distribution

kindle-0.4.16-py3-none-any.whl (45.2 kB view details)

Uploaded Python 3

File details

Details for the file kindle-0.4.16.tar.gz.

File metadata

  • Download URL: kindle-0.4.16.tar.gz
  • Upload date:
  • Size: 32.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for kindle-0.4.16.tar.gz
Algorithm Hash digest
SHA256 ed21f79ecdec62af7be0d25326eabd08485d2680125d01fc9abdcd29944602b4
MD5 f98c36f51f698428f297f55bdf1783db
BLAKE2b-256 b4fb16afb261e17f822952c64d021d4cb35d0f2ba97e0ebf55191b98ad5ffb5a

See more details on using hashes here.

File details

Details for the file kindle-0.4.16-py3-none-any.whl.

File metadata

  • Download URL: kindle-0.4.16-py3-none-any.whl
  • Upload date:
  • Size: 45.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for kindle-0.4.16-py3-none-any.whl
Algorithm Hash digest
SHA256 fa5ce965a4b4633f30bfb30933c27469b531c60c27c31a4a17153b15960d9222
MD5 741bc228578e5f23b8d1f96e14c35ef8
BLAKE2b-256 1850731b3aaa499ff76b3fabb606653088bb2f008ce6f588c15acee318bf2805

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page