Skip to main content

Scaffold library

Project description

KLYM Telemetry

A small library to add instrumentation in KLYM apps.

Publish in PYPI

pip install twine
python setup.py bdist_wheel
twine upload dist/*

Installation

pip install klym-telemetry

Get started

Instrumenting a fastapi app

  1. Import klym instrumenter
from klym_telemetry.instrumenters import instrument_app
  1. Import instrument decorator
from klym_telemetry.utils import instrument
  1. Initialize automatic instrumentation
instrument_app(app_type='fastapi', app=app, service_name="test-klym-microservice", endpoint="http://localhost:4317")

Full example:

import time

from fastapi import FastAPI
from klym_telemetry.instrumenters import instrument_app
from klym_telemetry.utils import instrument, klym_telemetry

app = FastAPI()
instrument_app(app_type='fastapi', app=app, service_name="test-klym-microservice", endpoint="http://localhost:4317")


@instrument(private_methods=True, attributes={"description": "Class to say hello"})
class Hello:

    @instrument(span_name="Get start message (private method)")
    def _get_start_message(self):
        return "Hello"

    def say_hello(self):
        return {"message": self._get_start_message() + " World"}

    def say_hello_with_name(self, name: str):
        return {"message": f"{self._get_start_message()} {name}"}


@app.get("/")
def root():
    klym_telemetry.add_event_curr_span("Start sleeping")  # Custom event example
    for _ in range(10):
        time.sleep(0.2)
    klym_telemetry.add_event_curr_span("Finished sleeping")
    return Hello().say_hello()


@app.get("/hello/{name}")
@instrument(span_name="Say hello with name", attributes={"description": "Class to say hello asynchrounously"})
async def say_hello(name: str):
    return {"message": f"Hello {name}"}

Instrumenting a celery app

  1. Import klym instrumenter
from klym_telemetry.instrumenters import instrument_app
  1. Import celery signal when worker starts
from celery.signals import worker_init
  1. Initialize automatic instrumentation
instrument_app(app_type='celery', service_name="integrations", endpoint="http://localhost:4317")

Full example:

import os

from celery import Celery
from celery.signals import worker_init
from klym_telemetry.instrumenters import instrument_app

# set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'core.settings.local')

app = Celery('integrations')

# Using a string here means the worker doesn't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
#   should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')

app.autodiscover_tasks()

app.conf.update(
    worker_pool_restarts=True,
)


@worker_init.connect()
def init_celery_tracing(*args, **kwargs):
    instrument_app(app_type='celery', service_name="integrations", endpoint="http://localhost:4317")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

klym_telemetry-0.1.12.5-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file klym_telemetry-0.1.12.5-py3-none-any.whl.

File metadata

File hashes

Hashes for klym_telemetry-0.1.12.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b9069e9ecf1a5fa212223289f2181acb03636318581e7ab42e23d2c6bc63c4d2
MD5 fd55e1f273aca6da44db03ee55569ed2
BLAKE2b-256 bb60233a748536e111b6f36f6738633f8ae92899958a25a6a021f2e28fdd0401

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page