Skip to main content

Transformers library for KoBERT, DistilKoBERT

Project description

KoBERT-Transformers

KoBERT & DistilKoBERT on ๐Ÿค— Huggingface Transformers ๐Ÿค—

KoBERT ๋ชจ๋ธ์€ ๊ณต์‹ ๋ ˆํฌ์˜ ๊ฒƒ๊ณผ ๋™์ผํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋ ˆํฌ๋Š” Huggingface tokenizer์˜ ๋ชจ๋“  API๋ฅผ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๐Ÿšจ ์ค‘์š”! ๐Ÿšจ

๐Ÿ™ TL;DR

  1. transformers ๋Š” v3.0 ์ด์ƒ์„ ๋ฐ˜๋“œ์‹œ ์„ค์น˜!
  2. tokenizer๋Š” ๋ณธ ๋ ˆํฌ์˜ kobert_transformers/tokenization_kobert.py๋ฅผ ์‚ฌ์šฉ!

1. Tokenizer ํ˜ธํ™˜

Huggingface Transformers๊ฐ€ v2.9.0๋ถ€ํ„ฐ tokenization ๊ด€๋ จ API๊ฐ€ ์ผ๋ถ€ ๋ณ€๊ฒฝ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด์— ๋งž์ถฐ ๊ธฐ์กด์˜ tokenization_kobert.py๋ฅผ ์ƒ์œ„ ๋ฒ„์ „์— ๋งž๊ฒŒ ์ˆ˜์ •ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

2. Embedding์˜ padding_idx ์ด์Šˆ

์ด์ „๋ถ€ํ„ฐ BertModel์˜ BertEmbeddings์—์„œ padding_idx=0์œผ๋กœ Hard-coding๋˜์–ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. (์•„๋ž˜ ์ฝ”๋“œ ์ฐธ๊ณ )

class BertEmbeddings(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

๊ทธ๋Ÿฌ๋‚˜ Sentencepiece์˜ ๊ฒฝ์šฐ ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ pad_token_id=1, unk_token_id=0์œผ๋กœ ์„ค์ •์ด ๋˜์–ด ์žˆ๊ณ  (์ด๋Š” KoBERT๋„ ๋™์ผ), ์ด๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๋Š” BertModel์˜ ๊ฒฝ์šฐ ์›์น˜ ์•Š์€ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Huggingface์—์„œ๋„ ์ตœ๊ทผ์— ํ•ด๋‹น ์ด์Šˆ๋ฅผ ์ธ์ง€ํ•˜์—ฌ ์ด๋ฅผ ์ˆ˜์ •ํ•˜์—ฌ v2.9.0์— ๋ฐ˜์˜ํ•˜์˜€์Šต๋‹ˆ๋‹ค. (๊ด€๋ จ PR #3793) config์— pad_token_id=1 ์„ ์ถ”๊ฐ€ ๊ฐ€๋Šฅํ•˜์—ฌ ์ด๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

class BertEmbeddings(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

๊ทธ๋Ÿฌ๋‚˜ v.2.9.0์—์„œ DistilBERT, ALBERT ๋“ฑ์—๋Š” ์ด ์ด์Šˆ๊ฐ€ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์•„ ์ง์ ‘ PR์„ ์˜ฌ๋ ค ์ฒ˜๋ฆฌํ•˜์˜€๊ณ  (๊ด€๋ จ PR #3965), v2.9.1์— ์ตœ์ข…์ ์œผ๋กœ ๋ฐ˜์˜๋˜์–ด ๋ฐฐํฌ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์•„๋ž˜๋Š” ์ด์ „๊ณผ ํ˜„์žฌ ๋ฒ„์ „์˜ ์ฐจ์ด์ ์„ ๋ณด์—ฌ์ฃผ๋Š” ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค.

# Transformers v2.7.0
>>> from transformers import BertModel, DistilBertModel
>>> model = BertModel.from_pretrained("monologg/kobert")
>>> model.embeddings.word_embeddings
Embedding(8002, 768, padding_idx=0)
>>> model = DistilBertModel.from_pretrained("monologg/distilkobert")
>>> model.embeddings.word_embeddings
Embedding(8002, 768, padding_idx=0)


### Transformers v2.9.1
>>> from transformers import BertModel, DistilBertModel
>>> model = BertModel.from_pretrained("monologg/kobert")
>>> model.embeddings.word_embeddings
Embedding(8002, 768, padding_idx=1)
>>> model = DistilBertModel.from_pretrained("monologg/distilkobert")
>>> model.embeddings.word_embeddings
Embedding(8002, 768, padding_idx=1)

KoBERT / DistilKoBERT on ๐Ÿค— Transformers ๐Ÿค—

Dependencies

  • torch>=1.1.0
  • transformers>=3,<5

How to Use

>>> from transformers import BertModel, DistilBertModel
>>> bert_model = BertModel.from_pretrained('monologg/kobert')
>>> distilbert_model = DistilBertModel.from_pretrained('monologg/distilkobert')

Tokenizer๋ฅผ ์‚ฌ์šฉํ•˜๋ ค๋ฉด, kobert_transformers/tokenization_kobert.py ํŒŒ์ผ์„ ๋ณต์‚ฌํ•œ ํ›„, KoBertTokenizer๋ฅผ ์ž„ํฌํŠธํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.

  • KoBERT์™€ DistilKoBERT ๋ชจ๋‘ ๋™์ผํ•œ ํ† ํฌ๋‚˜์ด์ €๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ๊ธฐ์กด KoBERT์˜ ๊ฒฝ์šฐ Special Token์ด ์ œ๋Œ€๋กœ ๋ถ„๋ฆฌ๋˜์ง€ ์•Š๋Š” ์ด์Šˆ๊ฐ€ ์žˆ์–ด์„œ ํ•ด๋‹น ๋ถ€๋ถ„์„ ์ˆ˜์ •ํ•˜์—ฌ ๋ฐ˜์˜ํ•˜์˜€์Šต๋‹ˆ๋‹ค. (Issue link)
>>> from tokenization_kobert import KoBertTokenizer
>>> tokenizer = KoBertTokenizer.from_pretrained('monologg/kobert') # monologg/distilkobert๋„ ๋™์ผ
>>> tokenizer.tokenize("[CLS] ํ•œ๊ตญ์–ด ๋ชจ๋ธ์„ ๊ณต์œ ํ•ฉ๋‹ˆ๋‹ค. [SEP]")
>>> ['[CLS]', 'โ–ํ•œ๊ตญ', '์–ด', 'โ–๋ชจ๋ธ', '์„', 'โ–๊ณต์œ ', 'ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', 'โ–ํ•œ๊ตญ', '์–ด', 'โ–๋ชจ๋ธ', '์„', 'โ–๊ณต์œ ', 'ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]'])
>>> [2, 4958, 6855, 2046, 7088, 1050, 7843, 54, 3]

Kobert-Transformers (Pip library)

PyPI license Downloads

  • tokenization_kobert.py๋ฅผ ๋žฉํ•‘ํ•œ ํŒŒ์ด์ฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
  • KoBERT, DistilKoBERT๋ฅผ Huggingface Transformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ํ˜•ํƒœ๋กœ ์ œ๊ณต
  • v0.5.1์ด์ƒ๋ถ€ํ„ฐ๋Š” transformers v3.0 ์ด์ƒ์œผ๋กœ ๊ธฐ๋ณธ ์„ค์น˜ํ•ฉ๋‹ˆ๋‹ค. (transformers v4.0 ๊นŒ์ง€๋Š” ์ด์Šˆ ์—†์ด ์‚ฌ์šฉ ๊ฐ€๋Šฅ)

Install Kobert-Transformers

pip3 install kobert-transformers

How to Use

>>> import torch
>>> from kobert_transformers import get_kobert_model, get_distilkobert_model
>>> model = get_kobert_model()
>>> model.eval()
>>> input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
>>> attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
>>> sequence_output, pooled_output = model(input_ids, attention_mask, token_type_ids)
>>> sequence_output[0]
tensor([[-0.2461,  0.2428,  0.2590,  ..., -0.4861, -0.0731,  0.0756],
        [-0.2478,  0.2420,  0.2552,  ..., -0.4877, -0.0727,  0.0754],
        [-0.2472,  0.2420,  0.2561,  ..., -0.4874, -0.0733,  0.0765]],
       grad_fn=<SelectBackward>)
>>> from kobert_transformers import get_tokenizer
>>> tokenizer = get_tokenizer()
>>> tokenizer.tokenize("[CLS] ํ•œ๊ตญ์–ด ๋ชจ๋ธ์„ ๊ณต์œ ํ•ฉ๋‹ˆ๋‹ค. [SEP]")
['[CLS]', 'โ–ํ•œ๊ตญ', '์–ด', 'โ–๋ชจ๋ธ', '์„', 'โ–๊ณต์œ ', 'ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', 'โ–ํ•œ๊ตญ', '์–ด', 'โ–๋ชจ๋ธ', '์„', 'โ–๊ณต์œ ', 'ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]'])
[2, 4958, 6855, 2046, 7088, 1050, 7843, 54, 3]

Reference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kobert_transformers-0.6.0.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

kobert_transformers-0.6.0-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file kobert_transformers-0.6.0.tar.gz.

File metadata

  • Download URL: kobert_transformers-0.6.0.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.19

File hashes

Hashes for kobert_transformers-0.6.0.tar.gz
Algorithm Hash digest
SHA256 47ecd26031e1ed500645d0bb7f773bcdc43086640f264b4eaef2032cdf49120c
MD5 ab1918d37a8d10743757f28a6b842b93
BLAKE2b-256 e37caa6dd2025bf09fa235614962a8d0d7cb27ea739985f5788a05105200b7fb

See more details on using hashes here.

File details

Details for the file kobert_transformers-0.6.0-py3-none-any.whl.

File metadata

File hashes

Hashes for kobert_transformers-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4d5c170b53ff5256f0c8bffa98f2b2554f1fd4b0d38c3fdc549a17df5a9adb4f
MD5 b9c99890ebfa8a3bbb43e230396bdb8a
BLAKE2b-256 77af2a85216d5a4faf2d29fa8325cfdda9f29f8b4d3ad56040162dfb8fca6992

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page