Skip to main content

Quantitative, Fast Grid-Based Fields Calculations in 2D and 3D - Residence Time Distributions, Velocity Grids, Eulerian Cell Projections etc.

Project description

KonigCell

PyPI version shields.io Documentation Status Language grade: Python Language grade: C/C++ License: MIT PyPI pyversions

Wheels Windows Wheels MacOS Wheels Linux Wheel Python

Quantitative, Fast Grid-Based Fields Calculations in 2D and 3D - Residence Time Distributions, Velocity Grids, Eulerian Cell Projections etc.

That sounds dry as heck.

Project moving particles' trajectories (experimental or simulated) onto 2D or 3D grids with infinite resolution.

Better? No? Here are some figures produced by KonigCell:

Example Plots

Left panel: 2D residence time distribution in a GranuTools GranuDrum imaged using Positron Emission Particle Tracking (PEPT). Two middle panels: 3D velocity distribution in the same system; voxels are rendered as a scatter plot (left) and tomogram-like 3-slice (right). Right panel: velocity vectorfield in a constricted pipe simulating a aneurysm, imaged using PEPT.

This is, to my knowledge, the only library that accurately projects particle trajectories onto grids - that is, taking their full projected area / volume into account (and not approximating them as points / lines). It's also the only one creating quantitative 3D projections.

And it is fast - 1,000,000 particle positions can be rasterized onto a 512x512 grid in 7 seconds on my 16-thread i9 CPU. The code is fully parallelised on threads, processes or distributed MPI nodes.

But Why?

Rasterizing moving tracers onto uniform grids is a powerful way of computing statistics about a system - occupancies, velocity vector fields, modelling particle clump imaging etc. - be it experimental or simulated. However, the classical approach of approximating particle trajectories as lines discards a lot of (most) information.

Here is an example of a particle moving randomly inside a box - on a high resolution (512x512) pixel grid, the classical approach (top row) does not yield much better statistics with increasing numbers of particle positions imaged. Projecting complete trajectory areas onto the grid (KonigCell, bottom row) preserves more information about the system explored:

Increasing Positions

A typical strategy for dealing with information loss is to coarsen the pixel grid, resulting in a trade-off between accuracy and statistical soundness. However, even very low resolutions still yield less information using line approximations (top row). With area projections, you can increase the resolution arbitrarily and improve precision (KonigCell, bottom row):

Increasing Resolution

The KonigCell Libraries

This repository effectively hosts three libraries:

  • konigcell2d: a portable C library for 2D grid projections.
  • konigcell3d: a portable C library for 3D grid projections.
  • konigcell: a user-friendly Python interface to the two libraries above.

Installing the Python Package

This package supports Python 3.6 and above (though it might work with even older versions).

Install this package from PyPI:

pip install konigcell

Or conda-forge:

conda install konigcell

If you have a relatively standard system, the above should just download pre-compiled wheels - so no prior configuration should be needed.

To build this package on your specific machine, you will need a C compiler - the low-level C code does not use any tomfoolery, so any compiler since the 2000s should do.

To build the latest development version from GitHub:

pip install git+https://github.com/anicusan/KonigCell

Integrating the C Libraries with your Code

The C libraries in the konigcell2d and konigcell3d directories in this repository; they contain instructions for compiling and using the low-level subroutines. All code is fully commented and follows a portable subset of the C99 standard - so no VLAs, weird macros or compiler-specific extensions. Even MSVC compiles it!

You can run make in the konigcell2d or konigcell3d directories to build shared libraries and the example executables under -Wall -Werror -Wextra like a stickler. Running make in the repository root builds both libraries.

Both libraries are effectively single-source - they should be as straightforward as possible to integrate in other C / C++ codebases, or interface with from higher-level programming languages.

Examples and Documentation

The examples directory contains some Python scripts using the high-level Python routines and the low-level Cython interfaces. The konigcell2d and konigcell3d directories contain C examples.

Full documentation is available here.

import numpy as np
import konigcell as kc

# Generate a short trajectory of XY positions to pixellise
positions = np.array([
    [0.3, 0.2],
    [0.2, 0.8],
    [0.3, 0.55],
    [0.6, 0.8],
    [0.3, 0.45],
    [0.6, 0.2],
])

# The particle radius may change
radii = np.array([0.05, 0.03, 0.01, 0.02, 0.02, 0.03])

# Values to rasterize - velocity, duration, etc.
values = np.array([1, 2, 1, 1, 2, 1])

# Pixellise the particle trajectories
pixels1 = kc.dynamic2d(
    positions,
    mode = kc.ONE,
    radii = radii,
    values = values[:-1],
    resolution = (512, 512),
)

pixels2 = kc.static2d(
    positions,
    mode = kc.ONE,
    radii = radii,
    values = values,
    resolution = (512, 512),
)

# Create Plotly 1x2 subplot grid and add Plotly heatmaps of pixels
fig = kc.create_fig(
    nrows = 1, ncols = 2,
    subplot_titles = ["Dynamic 2D", "Static 2D"],
)

fig.add_trace(pixels1.heatmap_trace(), row = 1, col = 1)
fig.add_trace(pixels2.heatmap_trace(), row = 1, col = 2)

fig.show()

Static-Dynamic 2D

Contributing

You are more than welcome to contribute to this library in the form of library improvements, documentation or helpful examples; please submit them either as:

Acknowledgements

I would like to thank the Formulation Engineering CDT @School of Chemical Engineering and the Positron Imaging Centre @School of Physics and Astronomy, University of Birmingham for supporting my work.

And thanks to Dr. Kit Windows-Yule for putting up with my bonkers ideas.

Citing

If you use this library in your research, you are kindly asked to cite:

[Paper after publication]

This library would not have been possible without the excellent r3d library (https://github.com/devonmpowell/r3d) which forms the very core of the C subroutines; if you use KonigCell in your work, please also cite:

Powell D, Abel T. An exact general remeshing scheme applied to physically conservative voxelization. Journal of Computational Physics. 2015 Sep 15;297:340-56.

Licensing

KonigCell is MIT licensed. Enjoy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

konigcell-0.2.1.tar.gz (298.1 kB view details)

Uploaded Source

Built Distributions

konigcell-0.2.1-cp310-cp310-win_amd64.whl (413.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

konigcell-0.2.1-cp310-cp310-win32.whl (387.6 kB view details)

Uploaded CPython 3.10 Windows x86

konigcell-0.2.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (557.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

konigcell-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (554.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

konigcell-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl (431.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

konigcell-0.2.1-cp39-cp39-win_amd64.whl (413.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

konigcell-0.2.1-cp39-cp39-win32.whl (387.2 kB view details)

Uploaded CPython 3.9 Windows x86

konigcell-0.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (557.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

konigcell-0.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (555.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

konigcell-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl (429.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

konigcell-0.2.1-cp38-cp38-win_amd64.whl (432.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

konigcell-0.2.1-cp38-cp38-win32.whl (406.3 kB view details)

Uploaded CPython 3.8 Windows x86

konigcell-0.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (579.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

konigcell-0.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (575.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

konigcell-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl (446.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

konigcell-0.2.1-cp37-cp37m-win_amd64.whl (430.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

konigcell-0.2.1-cp37-cp37m-win32.whl (404.1 kB view details)

Uploaded CPython 3.7m Windows x86

konigcell-0.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

konigcell-0.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (582.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

konigcell-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (447.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

konigcell-0.2.1-cp36-cp36m-win_amd64.whl (430.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

konigcell-0.2.1-cp36-cp36m-win32.whl (404.1 kB view details)

Uploaded CPython 3.6m Windows x86

konigcell-0.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (584.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

konigcell-0.2.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (581.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

konigcell-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl (447.0 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file konigcell-0.2.1.tar.gz.

File metadata

  • Download URL: konigcell-0.2.1.tar.gz
  • Upload date:
  • Size: 298.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1.tar.gz
Algorithm Hash digest
SHA256 46a51629ef503f06276314ca9ceba385439b28f2d655cd9abeb34a74c19d5aca
MD5 5eda3504a194563552b91ce27420b6e5
BLAKE2b-256 8cfaa73f7b471a6683673b1cc365686ef2a6645453978d8e2e268529672ee849

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cff78b65375c9dabd49cd0dfefda752da0ef0fcec29c4f9d7d5313e3da5b7fcd
MD5 be7c3afd5154d217c0f1819b4bc8f43d
BLAKE2b-256 4ee1e0561aa71431bf64a15100c4596621b815994df30062c4dd56af9e00eaad

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 387.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 642e1f23342448fc291199df4459db3c99442b3d9b02e1f9da5d3d18e1cbf022
MD5 0ec226968ec193470a0bec2dc703f6da
BLAKE2b-256 64ef7a27fed7e1232c15b731ba150255674b13701bb06e1fe173be49e0073582

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5b3a97026a8901fe26bac285537c482391afd306eef4bc6f8fe6e9cba86ca452
MD5 4c1166455a61675ca0a05d8b6615f0aa
BLAKE2b-256 72f2479ca6e52827d7a26c3b13cdd727b33c1e396e9a2bee9ee26b442e5bbf9b

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 758f5bdbe4a6e143203e605cbe18c872e96d62744a4a660d87d2e64909b16be3
MD5 c23bfd71ca89abcb1ec29032a05290e9
BLAKE2b-256 d8935eacb2f6db2b3ef659646d2df401b8b14cb65b0a41c4428f974800af6898

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93bdbb6b7fb3fbdf4ecdbd7504698c43bf2b3f39aa5952a4dad5c046e74ea466
MD5 2d40b5a697f3c7dba96dd8cea54766cf
BLAKE2b-256 0d4c0e826cd20ed46712178c655004ee57cd3e2a3f6466ed7a2a23ec6b93c01e

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 413.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e545b7899d4f20dec2997630a9b524193c63d441fcc0da716062db80caee870d
MD5 0cccff25fae9aed303280b44a148608d
BLAKE2b-256 6294855a49efa1b2ad863f500eed0978aecbbe61231784f0289bcebd301ef052

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 387.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 235295bea38a6911a113bad7af53884c4bf52946980bfd0fe54a143d1e338948
MD5 e3fd690ed5b41f7a54f8464d81f1805a
BLAKE2b-256 c6f561fc1d8f5009133895f40a314a540246d902040e7baf5c6a96861384cfe5

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fa8029e1bade31eea7f7aaf6367bab52491133582e69abdce67dd6e66e7c148c
MD5 b67096d25a2aa02cdbd71ef5dd7b6991
BLAKE2b-256 d43588a986b983e146b5718ad44f9e16737762826c0b8cff5852545c318eff57

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d88747a325373e504712a537c4a709df0f980c837f34815e9bcb572d71a122c5
MD5 6f50bda2af356bdc278b9565fc2541a0
BLAKE2b-256 52ea47c7a2ead68708f670bbcf490e3d4e7703fe14fb249153830dcc38c51256

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d9b5d8aa093da77fd7f16ceb73cfa78177b7a46f7dba63aada85d6192d627de
MD5 ea8a39e60cc4106883f6fe148514d790
BLAKE2b-256 45010edb1262c4a78171e8a81c2193d2a858461ee9b88c570acbc744615e2175

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 432.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4dfe5f7abeaf157f008872045b6c01fca140f1aaf7b5e1d3849a12adfba201cc
MD5 df29948f35f1e94c15fabd5be7badf2d
BLAKE2b-256 beed49767132f8973f47cc79e9ae0daef50fcc2b21535e339427f4e8476aa073

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 406.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c78597d4b2fbf31ff0d818835186875cb6844308c9e5dfaa1e39ba955573ce3f
MD5 9855ccd87bff7360b61027ee55b1afdd
BLAKE2b-256 dfd91f8d538f915338e84c98014833f029e4a5ba7c222e1471b3ea116f0030c5

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c928d37713e04b518ead24c51d681c764ae2b5752ca5140e9cc57d1700a771c6
MD5 cf8cac7772be98521ec8c1e2cf4bf386
BLAKE2b-256 19fe9064d500314e0fff864ddc0f4263a8ed2b1cd8219f2c22491f3a884b7821

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ef0f0e2447ae57b054bae48abd9b4d54e9257c662f8781d7cb4935f0e2c8f703
MD5 c7f3adebf422719b66853ae0fa8922db
BLAKE2b-256 a0293213dd2c8c49806ffa1fdb8fda88dedc320a735186eb7801c9cc67e1e4ae

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0188feb5db9f079d90406180bc9a638a0cd19cb031a70c68a033d4047c0e481b
MD5 cf82b923dfab9c335e61892c5f22b3c1
BLAKE2b-256 addd7d6a1483be1743050ac4eb3c1ff933b7b6c739d5bc97bab1cc788186ce9f

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 430.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 118dd7a670173d912f54825bbd755613e2c887177fb6680c2a6ee3328002b754
MD5 a4da02b8f0da84d89417a60579b3dc90
BLAKE2b-256 7a1e82757ae6f63327fc1aa50806641e7603afc7bbf970a25cebd64867e86d80

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 404.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c7dae26f807e6f9ffecdf559c6739b5da0866621816dc9fc8330b50a4369016c
MD5 78bf7125533c530bc4f06deac7947a31
BLAKE2b-256 24967b4f48aff71f3e862e55358a5863ff82a36d96347e52b4be1f6f81120b94

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d52c95cf9ef3a77e476a05ab183d26c81a1349a2b41e1ba439d746009b4f3217
MD5 cef9d596f133e38a40cc3f65f57108ab
BLAKE2b-256 c0e0a8770c3ca4d69a86d658a8c704adf18259b9673e08c27e1a34778b52e101

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fa2696cc61c49eba93e51b44554c43a7e8e4ef485ae00676437f86fce94e9a8b
MD5 540c1503d9e93bc910188515f4b37ddb
BLAKE2b-256 7daec665e8ae2f2674b533ba0c0112e62ed54090852e1add9249077f616ef861

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b59001e39b73fa7dac619c1750d33e3160b59d0539c70fb625b3e117c6f26e2f
MD5 0a214f7209a0d12f1447f070090b2fa9
BLAKE2b-256 9281604f0b2bbc309ff7e162fb80a33ca6695db1f78edcef763f7955612c83ec

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 430.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b59ddb87e1ac980a37817371f23097caff967f3782f9356f3309f76ef3fe482c
MD5 90fedc6ebb7fdd7bdf1e64116afd3db5
BLAKE2b-256 c54a0695383f7972f4ea70101d0cc814e7ce32e70ddc98e3ba19322af7b29239

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: konigcell-0.2.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 404.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for konigcell-0.2.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c9e7e7960811ad5c4d73e4e83bf53ef55ddb3cfb639373181373557407fd6e59
MD5 a5a669eedbebab1951cd6945e20d7101
BLAKE2b-256 38643580780097feca02b367ddbb2bb3517b9dcaad72c6c8c9e4be50fa2b5274

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 75b03fb57da697196243db020d144a8428cb2aea6e8912e49a5afdc5ae0e93cc
MD5 f5f22c57081f6edf97b75f2d11dd0b19
BLAKE2b-256 75339e2322c12dc9f5f05c9b3952967d338177fa20f036e315956951b7af36c3

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0482b42affaf32a48d4de0cb3b22cf1b6b9c06b708028d1f893dc53c62284cfb
MD5 bfc4595499abd66eb5a0708fe95a54c9
BLAKE2b-256 9e478380db698cd600e26772532c3e9dcba0b9a208006ef3677fee6c1a81b285

See more details on using hashes here.

File details

Details for the file konigcell-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for konigcell-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3745dc2ca9fe706c1f16986a3173e71160d3534d6faac100ea2729fff5dd09b8
MD5 a9be051d03bc03bad0bd7f835c7a631c
BLAKE2b-256 c2449ebc8669d3c867270c399514c9ba4a019f8eb4f2e326959fece647a90199

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page