Skip to main content

A python interface to KPartiteKClique

Project description

PyKPartiteKClique

A python wrapper of https://github.com/kliem/KPartiteKClique.

Iterate over all k-cliques of a k-partite graph.

Requirements

  • setuptools
  • Cython

Quick start

A trivial example:

>>> from kpkc import KCliqueIterator
>>> edges = [[1, 2]]
>>> parts = [[1], [2]]
>>> it = KCliqueIterator(edges, parts)
>>> list(it)
[[1, 2]]

The default algorithm is kpkc, which first selects nodes with few edges:

>>> parts = [[1, 2, 3, 4], [5, 6, 7, 8, 9]]
>>> edges = [[1, 6], [5, 2], [5, 3]]
>>> edges += [[i, j] for i in range(2, 5) for j in range(6, 10)]
>>> it = KCliqueIterator(edges, parts)
>>> list(it)[:3]
[[1, 6], [3, 5], [2, 5]]

The algorithm FindClique first selects parts with few nodes:

>>> parts = [[1, 2, 3, 4], [5, 6, 7, 8, 9]]
>>> edges = [[1, 6], [5, 2], [5, 3]]
>>> edges += [[i, j] for i in range(2, 5) for j in range(6, 10)]
>>> it = KCliqueIterator(edges, parts, algorithm='FindClique')
>>> list(it)
[[1, 6], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [4, 6], [4, 7], [4, 8], [4, 9]]

Benchmarks

We benchmark the following algorithms/implementations:

  • kpkc (our implementation)
  • FindClique (our implementation)
  • Cliquer (exposed via SageMath)
  • networkx
  • mcqd (exposed via SageMath)

For this we use three types of graphs:

  • Graphs in sample_graphs/ that can be tested with kpkc.test.load_tester.

  • Also we benchmark random graphs with parameters (k, min_s, max_s, a_1, a_2), where k is the number of parts, each part has size in [min_s, max_s] chosen with uniform distribution. Each vertex v is assigned a random float p(v) chosen with uniform distribution from [a_1, a_2]. For all pairs v, w from different parts the edge is generated with probability (p(v) + p(w))/2.

    This approach is described in:

    • Grunert, Tore & Irnich, Stefan & Zimmermann, Hans-Jürgen & Schneider, Markus & Wulfhorst, Burkhard. (2001). Cliques in k-partite Graphs and their Application in Textile Engineering

    Such a random graph can be obtain with kpkc.test.get_random_k_partite_graph(k, min_s, max_s, a_1, a_2).

  • In addition we benchmark examples with paramters (k, max_s, a), where k is the number of parts. Parts have sizes 1 + ((max_s -1) * i) // k for i in 1, ..., k.

    Let f be the affine function determined by f(1) = 1 and f(a) = max_s. For all pairs v, w from different parts with sizes s, t, the edge is generated with probability f(min(s, t)).

    This means parts of size 1 will have all neighbors and the more vertices a part has, the lower will be the density of its edges.

    Such a random graph can be obtain with kpkc.test.get_random_k_partite_graph_2(k, max_s, a).

    In many contexts this might be a more natural choice than the above random graph. If the k-clique corresponds to some matching, than this corresponds to the fact that fewer choices means that people will be less picky. Example:

    Suppose there is only one cement mill in the area, two concrete pumps, twenty conrete mixer trucks, and twenty concrete crews. Nobody can question the quality of the cement mill, because there is no alternative. As there is only two concrete pumps, the truck drivers will usually be willing to work with both of them. Likewise the concrete crews will usually put up with both pump operators. However, it is very much possible that the conrete crews might refuse to work with some truck drivers (always late) or the truck drivers might refuse to work with some crews (always order more trucks than they need).

    In particular, the graphs in sample_graphs/ behave somewhat like this: Vertices in smaller parts have more neighbors than vertices in larger parts. There are more than 14 million of those that we would like to check. This is feasible with kpkc and appears infeasible with the other implementations.

The results have been obtained with an Intel i7-7700 CPU @3.60GHz.

Checking for a k-clique

We time how long it takes to either determine the clique number or to find the first k-clique, if any.

Note that the graphs in sample_graphs do not have k-cliques.

nan indicates that the computation was interrupted after 1000s (without determination).

Graph kpkc FindClique networkx Cliquer mcqd
0 1.67e+01 nan nan nan nan
1 1.70e+01 nan nan nan nan
2 1.67e+01 nan nan nan nan
20 4.52e+00 nan nan nan nan
100 1.67e+01 nan nan nan nan
1000 2.32e-01 7.47e+00 nan nan 1.40e+01
10000 7.60e-02 3.23e+00 nan nan 4.53e+00
1000000 1.35e+00 nan nan nan nan
2000000 6.50e-02 7.60e-01 nan 1.35e+01 3.45e+00
5000000 1.56e-01 6.25e+00 nan nan 1.44e+01
10000000 1.65e-02 1.61e-04 nan 1.19e+00 7.88e-01
(5, 50, 50, 0.14, 0.14) 2.00e-05 5.72e-06 1.46e-03 1.35e-03 2.09e-03
(5, 50, 50, 0.15, 0.15) 6.75e-04 2.79e-05 1.20e-02 1.42e-03 1.23e-03
(5, 50, 50, 0.2, 0.2) 1.29e-05 3.10e-06 1.47e-03 1.69e-03 1.55e-03
(5, 50, 50, 0.25, 0.25) 1.34e-05 4.05e-06 1.43e-03 2.22e-03 2.02e-03
(5, 50, 50, 0.0, 0.3) 9.18e-05 7.87e-06 1.60e-03 1.39e-03 1.55e-03
(5, 50, 50, 0.0, 0.4) 5.10e-05 4.53e-06 1.48e-03 1.83e-03 1.74e-03
(5, 50, 50, 0.0, 0.45) 3.08e-05 3.58e-06 1.25e-03 2.20e-03 2.08e-03
(5, 50, 50, 0.0, 0.5) 2.26e-05 4.29e-06 1.42e-03 2.19e-03 2.17e-03
(10, 26, 37, 0.49, 0.49) 4.58e-04 9.11e-05 8.07e-01 3.28e-02 3.17e-02
(10, 26, 37, 0.5, 0.5) 9.91e-04 4.03e-05 1.50e-01 5.11e-02 3.85e-02
(10, 26, 37, 0.51, 0.51) 1.20e-03 1.86e-05 3.31e-02 4.27e-02 3.96e-02
(10, 26, 37, 0.4, 0.6) 1.91e-03 1.43e-05 3.05e-01 1.05e-01 4.59e-02
(10, 26, 37, 0.3, 0.7) 1.74e-04 1.53e-05 5.43e-03 1.26e-01 5.12e-02
(10, 50, 50, 0.42, 0.42) 1.04e-01 1.70e-03 2.26e+01 2.61e-01 1.45e-01
(10, 50, 50, 0.43, 0.43) 2.23e-02 1.18e-03 7.89e+00 1.84e-01 1.26e-01
(10, 50, 50, 0.44, 0.44) 2.57e-02 4.64e-04 2.13e+00 1.96e-01 1.65e-01
(10, 50, 50, 0.46, 0.46) 4.98e-03 2.03e-05 8.41e-02 3.64e-01 2.46e-01
(10, 50, 50, 0.48, 0.48) 1.26e-03 5.72e-06 2.65e-02 7.82e-01 4.04e-01
(10, 50, 50, 0.5, 0.5) 3.91e-04 2.10e-05 1.41e-02 1.40e+00 6.94e-01
(50, 5, 15, 0.91, 0.91) nan 2.07e-01 nan nan nan
(50, 5, 15, 0.918, 0.918) nan 3.04e-01 nan nan nan
(50, 5, 15, 0.92, 0.92) nan 1.34e-01 nan nan nan
(20, 23, 39, 0.7, 0.7) 3.29e+02 2.09e-01 nan nan nan
(20, 23, 39, 0.71, 0.71) 1.55e+01 2.63e-02 nan nan nan
(20, 23, 39, 0.72, 0.72) 5.09e+00 1.74e-03 nan nan nan
(20, 23, 39, 0.7, 0.73) 2.44e+01 5.84e-02 nan nan nan
(20, 23, 39, 0.65, 0.78) 8.93e-01 2.88e-03 nan nan nan
(30, 11, 30, 0.6, 0.6) 3.03e-01 1.10e-04 nan 1.77e+02 5.15e+01
(30, 11, 30, 0.7, 0.7) 5.13e+00 9.04e-04 nan nan nan
(30, 11, 30, 0.8, 0.8) nan 1.63e-01 nan nan nan
(30, 11, 30, 0.81, 0.81) nan 5.80e-01 nan nan nan
(30, 11, 30, 0.82, 0.82) nan 1.42e-01 nan nan nan
(30, 11, 30, 0.84, 0.84) 7.06e+02 7.20e-04 nan nan nan
(30, 11, 30, 0.88, 0.88) 2.75e+00 1.14e-05 7.87e+02 nan nan
(100, 10, 10, 0.7, 0.7) 4.90e-02 5.39e-05 nan nan nan
(100, 10, 10, 0.8, 0.8) 4.12e+00 3.08e-04 nan nan nan
(100, 10, 10, 0.85, 0.85) 2.36e+02 2.50e-03 nan nan nan
(100, 10, 10, 0.9, 0.9) nan 1.43e-01 nan nan nan
(100, 10, 10, 0.92, 0.92) nan 5.80e+00 nan nan nan
(100, 10, 10, 0.94, 0.94) nan nan nan nan nan
(100, 10, 10, 0.95, 0.95) nan nan nan nan nan
(100, 10, 10, 0.97, 0.97) nan 8.58e-05 nan nan nan
(3, 100, 100, 0.1, 0.1) 1.05e-05 2.86e-06 9.32e-04 1.20e-03 1.16e-03
(4, 100, 100, 0.15, 0.15) 1.67e-05 3.10e-06 2.17e-03 3.41e-03 3.34e-03
(5, 100, 100, 0.2, 0.2) 2.77e-05 3.10e-06 4.79e-03 7.17e-03 8.46e-03
(6, 100, 100, 0.25, 0.25) 1.78e-04 4.53e-06 9.87e-03 1.98e-02 2.28e-02
(7, 50, 50, 0.35, 0.35) 2.87e-04 8.11e-06 5.90e-03 1.11e-02 1.09e-02
(8, 50, 50, 0.4, 0.4) 1.09e-04 1.50e-05 9.39e-03 3.45e-02 3.21e-02
(9, 50, 50, 0.45, 0.45) 8.06e-04 9.30e-06 1.95e-02 5.15e-02 1.27e-01
(10, 50, 50, 0.5, 0.5) 2.76e-03 6.44e-06 1.71e-02 1.85e+00 6.71e-01
(10, 10, 10, 0.74, 0.74) 4.67e-05 3.58e-06 1.39e-03 8.95e-03 3.46e-03
(20, 12, 12, 0.86, 0.86) 1.33e-03 8.11e-06 5.76e-01 nan 3.54e+02
(30, 13, 13, 0.91, 0.91) 1.12e-02 1.03e-05 9.35e-01 nan nan
(40, 13, 13, 0.93, 0.93) 1.54e+00 1.62e-05 nan nan nan
(50, 14, 14, 0.94, 0.94) 5.49e-01 2.10e-05 nan nan nan
(60, 14, 14, 0.95, 0.95) nan 2.62e-05 nan nan nan
(70, 14, 14, 0.96, 0.96) 2.94e+02 4.46e-05 nan nan nan
(10, 22, 22, 0.65, 0.65) 1.66e-04 4.77e-06 3.45e-03 3.04e-01 1.18e-01
(20, 28, 28, 0.82, 0.82) 1.56e-02 7.63e-06 9.54e-02 nan nan
(30, 31, 31, 0.87, 0.87) 3.39e-01 1.31e-05 3.46e+00 nan nan
(10, 48, 48, 0.59, 0.59) 8.51e-05 5.25e-06 1.20e-02 1.25e+01 6.54e+00
(20, 68, 68, 0.77, 0.77) 2.06e-03 9.78e-06 5.49e-01 nan nan
(5, 10, 0.1) 6.68e-06 2.86e-06 1.09e-04 8.32e-05 9.68e-05
(5, 10, 0.2) 6.20e-06 2.62e-06 9.92e-05 7.32e-05 9.39e-05
(5, 20, 0.05) 8.58e-06 2.86e-06 2.70e-04 2.49e-04 2.60e-04
(5, 20, 0.1) 7.39e-06 2.86e-06 2.43e-04 2.01e-04 2.50e-04
(5, 50, 0.01) 1.24e-05 2.62e-06 9.68e-04 1.05e-03 1.16e-03
(5, 50, 0.02) 1.24e-05 3.10e-06 9.86e-04 1.04e-03 1.17e-03
(10, 10, 0.4) 1.60e-05 3.58e-06 5.64e-04 2.22e-04 2.97e-04
(10, 10, 0.6) 1.48e-05 3.34e-06 3.97e-04 2.64e-04 3.19e-04
(10, 20, 0.3) 2.41e-05 3.81e-06 1.02e-03 8.73e-04 1.02e-03
(10, 20, 0.5) 2.38e-05 3.81e-06 1.08e-03 1.01e-03 2.85e-03
(10, 50, 0.05) 8.39e-05 4.05e-06 4.54e-03 4.47e-03 5.15e-03
(10, 50, 0.1) 6.22e-05 5.01e-06 5.67e-03 4.50e-03 5.47e-03
(10, 100, 0.01) 7.58e-05 6.20e-06 2.03e-02 2.18e-02 2.54e-02
(10, 100, 0.02) 6.20e-05 8.34e-06 1.60e-02 2.04e-02 2.63e-02
(20, 10, 0.6) 4.68e-04 2.88e-05 4.07e+00 2.04e-03 3.26e-03
(20, 10, 0.7) 8.51e-05 5.25e-06 7.56e+00 8.25e-03 1.28e-02
(20, 20, 0.5) 3.68e-04 9.06e-06 7.13e-01 1.21e-02 1.04e-01
(20, 20, 0.6) 1.36e-04 6.44e-06 3.36e-02 5.23e-01 9.86e-01
(20, 50, 0.3) 1.81e-01 3.72e-01 nan 2.57e-02 3.78e+00
(20, 50, 0.35) 2.03e-02 2.76e-02 nan 2.36e-02 9.85e+00
(20, 100, 0.2) 9.73e-02 4.33e+02 nan 1.41e-01 6.70e+01
(20, 100, 0.25) 1.91e-02 1.05e+00 nan 9.13e-02 1.55e+02
(50, 10, 0.83) 7.41e+00 3.43e-03 nan nan 3.21e+02
(50, 10, 0.85) 2.06e-02 5.82e-04 nan 1.96e+02 5.66e+02
(50, 20, 0.5) 2.00e-01 2.96e-02 nan nan nan
(50, 20, 0.6) 2.76e+00 4.69e-01 nan nan nan
(50, 20, 0.7) 1.63e+02 9.19e+01 nan nan nan
(50, 20, 0.71) 3.22e+02 1.13e+02 nan nan nan
(50, 20, 0.72) nan 3.73e+02 nan nan nan
(50, 20, 0.73) nan 8.87e+02 nan nan nan
(50, 20, 0.75) nan nan nan nan nan
(50, 20, 0.76) nan nan nan nan nan
(50, 20, 0.77) nan 3.96e+00 nan nan nan
(50, 20, 0.78) nan 3.34e+00 nan nan nan
(50, 20, 0.79) nan 7.76e-02 nan nan nan
(50, 20, 0.8) nan 8.61e-04 nan nan nan
(50, 50, 0.1) 3.74e-02 5.94e+00 nan nan nan
(50, 50, 0.2) 9.52e-02 1.41e+01 nan nan nan
(50, 50, 0.3) 1.90e+00 2.59e+02 nan nan nan
(50, 50, 0.4) 2.08e+01 nan nan nan nan
(50, 50, 0.5) 8.57e+02 nan nan nan nan
(50, 50, 0.6) nan nan nan nan nan
(50, 50, 0.71) nan nan nan nan nan
(50, 50, 0.72) nan 1.58e+01 nan nan nan
(50, 50, 0.73) nan 1.39e+01 nan nan nan
(50, 50, 0.74) nan 3.01e-01 nan 1.48e+02 nan
(50, 100, 0.1) 2.30e-01 nan nan nan nan
(50, 100, 0.2) 1.04e+01 nan nan nan nan
(50, 100, 0.3) 2.24e+02 nan nan nan nan
(50, 100, 0.4) nan nan nan nan nan
(50, 100, 0.64) nan nan nan nan nan
(50, 100, 0.65) nan nan nan 6.39e+01 nan
(50, 100, 0.66) nan nan nan 3.29e+01 nan
(50, 100, 0.67) nan nan nan nan nan
(50, 100, 0.68) nan nan nan nan nan
(50, 100, 0.69) nan 1.84e+02 nan 7.86e-01 nan
(50, 100, 0.7) nan 1.68e+01 nan nan nan
(100, 10, 0.6) 3.85e-03 1.26e-05 nan nan nan
(100, 10, 0.7) 1.33e-02 1.86e-05 nan nan nan
(100, 10, 0.8) 5.41e-01 3.49e-03 nan nan nan
(100, 20, 0.4) 4.76e-02 1.55e-03 nan nan nan
(100, 20, 0.5) 4.99e-01 6.19e-03 nan nan nan
(100, 20, 0.6) 4.35e+00 1.30e-01 nan nan nan
(100, 20, 0.7) 4.42e+02 2.91e+00 nan nan nan
(100, 20, 0.8) nan nan nan nan nan
(100, 20, 0.89) nan nan nan nan nan
(100, 20, 0.9) nan 1.69e+00 nan nan nan
(100, 50, 0.1) 1.59e-01 1.20e+01 nan nan nan
(100, 50, 0.2) 2.77e-01 3.54e+01 nan nan nan
(100, 50, 0.3) 8.45e+00 5.05e+02 nan nan nan
(100, 50, 0.4) 3.99e+01 nan nan nan nan
(100, 50, 0.5) nan nan nan nan nan
(100, 50, 0.87) nan nan nan nan nan
(100, 50, 0.88) nan 2.64e+00 nan nan nan
(100, 50, 0.89) nan 1.58e-02 nan nan nan
(100, 50, 0.9) nan 2.91e-04 nan nan nan
(100, 100, 0.1) 9.02e-01 nan nan nan nan
(100, 100, 0.2) 4.12e+01 nan nan nan nan
(100, 100, 0.3) 2.63e+02 nan nan nan nan
(100, 100, 0.4) nan nan nan nan nan
(100, 100, 0.85) nan nan nan nan nan
(100, 100, 0.86) nan 1.51e+01 nan nan nan
(100, 100, 0.87) nan 3.93e-01 nan nan nan
(100, 100, 0.88) nan 9.61e-05 nan nan nan
(100, 100, 0.89) nan 9.18e-05 nan nan nan
(100, 100, 0.9) nan 8.42e-05 nan nan nan

Finding all k-cliques

We time how long it takes to find all k-clique, if this time differs from above.

Graph kpkc FindClique networkx
(5, 50, 50, 0.14, 0.14) 6.62e-04 3.22e-05 1.10e-02
(5, 50, 50, 0.2, 0.2) 9.15e-04 1.10e-04 2.32e-02
(5, 50, 50, 0.25, 0.25) 2.36e-03 6.10e-04 4.27e-02
(5, 50, 50, 0.0, 0.3) 7.50e-04 5.13e-05 1.45e-02
(5, 50, 50, 0.0, 0.4) 1.53e-03 3.56e-04 2.87e-02
(5, 50, 50, 0.0, 0.45) 2.65e-03 9.86e-04 3.81e-02
(5, 50, 50, 0.0, 0.5) 5.42e-03 2.67e-03 5.24e-02
(10, 26, 37, 0.49, 0.49) 3.13e-02 5.78e-04 1.68e+01
(10, 26, 37, 0.5, 0.5) 3.77e-02 6.79e-04 8.44e+00
(10, 26, 37, 0.51, 0.51) 4.05e-02 7.99e-04 8.81e+00
(10, 26, 37, 0.4, 0.6) 4.58e-02 9.74e-04 1.07e+01
(10, 26, 37, 0.3, 0.7) 6.86e-02 3.56e-03 1.36e+01
(10, 50, 50, 0.43, 0.43) 1.15e-01 1.95e-03 2.53e+01
(10, 50, 50, 0.44, 0.44) 1.56e-01 2.56e-03 3.36e+01
(10, 50, 50, 0.46, 0.46) 3.08e-01 4.57e-03 5.33e+01
(10, 50, 50, 0.48, 0.48) 6.14e-01 8.58e-03 8.61e+01
(10, 50, 50, 0.5, 0.5) 1.08e+00 2.22e-02 1.42e+02
(50, 5, 15, 0.918, 0.918) nan 1.89e+00 nan
(50, 5, 15, 0.92, 0.92) nan 4.94e+01 nan
(20, 23, 39, 0.71, 0.71) 5.19e+02 3.48e-01 nan
(20, 23, 39, 0.72, 0.72) nan 1.12e+00 nan
(20, 23, 39, 0.7, 0.73) 7.80e+02 5.32e-01 nan
(20, 23, 39, 0.65, 0.78) 6.64e+02 5.31e-01 nan
(30, 11, 30, 0.82, 0.82) nan 8.82e-01 nan
(30, 11, 30, 0.84, 0.84) nan 7.01e+01 nan
(3, 100, 100, 0.1, 0.1) 2.81e-03 1.74e-03 6.62e-03
(4, 100, 100, 0.15, 0.15) 5.01e-03 2.02e-03 3.99e-02
(5, 100, 100, 0.2, 0.2) 1.25e-02 2.10e-03 1.85e-01
(6, 100, 100, 0.25, 0.25) 4.08e-02 3.08e-03 1.01e+00
(7, 50, 50, 0.35, 0.35) 1.64e-02 8.58e-04 7.00e-01
(8, 50, 50, 0.4, 0.4) 4.57e-02 1.90e-03 3.63e+00
(9, 50, 50, 0.45, 0.45) 1.91e-01 5.27e-03 2.10e+01
(10, 50, 50, 0.5, 0.5) 1.04e+00 2.01e-02 1.39e+02
(10, 10, 10, 0.74, 0.74) 6.61e-02 3.10e-02 1.16e+00
(10, 22, 22, 0.65, 0.65) 4.99e-01 1.51e-01 2.84e+01
(10, 48, 48, 0.59, 0.59) 2.57e+01 7.69e+00 nan
(5, 10, 0.1) 1.10e-04 7.30e-05 4.87e-04
(5, 10, 0.2) 1.94e-04 1.41e-04 5.51e-04
(5, 20, 0.05) 2.93e-03 2.30e-03 5.23e-03
(5, 20, 0.1) 3.85e-03 3.09e-03 6.47e-03
(5, 50, 0.01) 7.54e-02 6.29e-02 1.36e-01
(5, 50, 0.02) 1.09e-01 9.27e-02 1.66e-01
(10, 10, 0.4) 4.80e-04 1.70e-04 1.77e-02
(10, 10, 0.6) 2.44e-02 1.34e-02 5.13e-02
(10, 20, 0.3) 3.35e-02 1.85e-02 8.44e-01
(10, 20, 0.5) 2.29e+00 1.65e+00 4.88e+00
(10, 50, 0.05) 5.68e-02 6.52e-02 3.01e+01
(10, 50, 0.1) 2.59e-01 2.04e-01 4.62e+01
(10, 100, 0.01) 5.24e+00 7.33e+00 nan
(10, 100, 0.02) 9.22e+00 1.13e+01 nan
(20, 10, 0.6) 2.31e-03 1.86e-04 1.59e+01
(20, 10, 0.7) 9.11e-01 3.48e-01 9.67e+01
(20, 20, 0.5) 1.31e-01 8.80e-02 nan
(20, 20, 0.6) 3.49e+01 2.21e+01 nan
(20, 50, 0.3) 1.11e+00 2.40e+01 nan
(20, 50, 0.35) 4.40e+00 7.32e+01 nan
(20, 100, 0.2) 8.36e+00 nan nan
(20, 100, 0.25) 4.31e+01 nan nan
(50, 10, 0.83) 2.24e+01 4.36e-01 nan
(50, 10, 0.85) nan 6.89e+01 nan

Conclusion

According to the above timings, kpkc and FindClique appear to be best choices for finding k-cliques in k-partite graphs.

  • If all vertices are expected to have somewhat the same number of neighbors, then FindClique is the best choice.
  • If there are many edges and the expected number of k-cliques is large, then FindClique is the best choice to obtain some k-cliques.
  • If only few k-cliques (if any) are exepcted and vertices in larger parts have fewer neighbors than vertices in smaller parts, then kpkc is the best choice to obtain all k-cliques.

Note that our implementation of FindClique appears to be faster in finding all k-cliques than the original implementations (which are not published) in

  • Grunert, Tore & Irnich, Stefan & Zimmermann, Hans-Jürgen & Schneider, Markus & Wulfhorst, Burkhard. (2001). Cliques in k-partite Graphs and their Application in Textile Engineering

and

  • Mirghorbani, M. & Krokhmal, P.. (2013). On finding k-cliques in k-partite graphs. Optimization Letters. 7. 10.1007/s11590-012-0536-y

It is significantly faster in finding the first k-clique: All cases with random graphs from the above two papers could be handled in less than a second, with three exceptions:

  • (100, 10, 10, 0.92, 0.92), which takes 5 seconds now, instead of 4000 seconds originally by Grunert et. al.,
  • (100, 10, 10, 0,94, 0.94) remains infeasible in the given time,
  • (100, 10, 10, 0,95, 0.95) remains infeasible in the given time. The original implementation of FindClique by Grundert et. al. apparently needed more than 100 seconds for random graphs with several different parameters to find the first k-clique.

The paper by Mirghorbani and Krokhmal lists several new parameters to time obtaining the first k-clique. We could not reproduce timings above one tenth of a millisecond, even in those cases that apparently took 10, 50 and 250 seconds respectively.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kpkc-0.1.0.tar.gz (85.1 kB view details)

Uploaded Source

File details

Details for the file kpkc-0.1.0.tar.gz.

File metadata

  • Download URL: kpkc-0.1.0.tar.gz
  • Upload date:
  • Size: 85.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.2.0 pkginfo/1.7.0 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.3

File hashes

Hashes for kpkc-0.1.0.tar.gz
Algorithm Hash digest
SHA256 683d548fd35b56c462ebb74100e0ec80ca3a79ae987d4b3c7568c2b29ff48f94
MD5 d329381504b7909453c33a982c1570de
BLAKE2b-256 5dd2ce641b0f137fbab2acc8094f301a8c5a3fbdf741b8fc127758db8781d99f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page