Skip to main content

A KServe Model Wrapper

Project description

kserve-helper

This is a helper for building docker images for ML models. Here are some basic examples. For more examples, please visit this repo.

Implement a Model Class for Serving

To build a docker image for serving, we only need to implement one class with load and predict methods:

class Model:

    def load(self):
        # Load the model
        pass

    def predict(
            self,
            image: str = Input(
                description="Base64 encoded image",
                default=""
            ),
            radius: float = Input(
                description="Standard deviation of the Gaussian kernel",
                default=2
            )
    ) -> Path:
        if image == "":
            raise ValueError("The input image is not set")
        im_binary = base64.b64decode(image)
        input_image = Image.open(io.BytesIO(im_binary))
        output_image = input_image.filter(ImageFilter.GaussianBlur(radius))
        output_path = KServeModel.generate_filepath("image.jpg")
        output_image.save(output_path)
        return Path(output_path)

The load function will be called during the initialization step, which will be only called once. The predict function will be called for each request. The input parameter info is specified by the Input class. This Input class allows us to set parameter descriptions, default value and constraints (e.g., 0 <= input value <= 1).

The output typing of the predict function is important. If the output type is Path or List[Path], the webhook for uploading will be called after predict is finished. In this case, the input request should also contain an additional key "upload_webhook" to specify the webhook server address (an example). If the output type is not Path, the results will be returned directly without calling the webhook.

Write a Config for Building Docker Image

To build the corresponding docker image for serving, we only need to write a config file:

build:
  python_version: "3.10"
  cuda: "11.7"

  # a list of commands (optional)
  commands:
    - "apt install -y software-properties-common"

  # a list of ubuntu apt packages to install (optional)
  system_packages:
    - "git"
    - "python3-opencv"

  # choose requirements.txt (optional)
  python_requirements:
    - "requirements.txt"

  # a list of packages in the format <package-name>==<version>
  python_packages:
    - "kservehelper>=1.1.0"
    - "salesforce_lavis-1.1.0-py3-none-any.whl"
    - "git+https://github.com/huggingface/diffusers.git"
    - "controlnet_aux==0.0.7"
    - "opencv-python==4.8.0.74"
    - "Pillow"
    - "tensorboard"
    - "mediapipe"
    - "accelerate"
    - "bitsandbytes"

# The name given to built Docker images
image: "<DOCKER-IMAGE-NAME:TAG>"

# model.py defines the entrypoint
entrypoint: "model.py"

In the config file, we can choose python version, cuda version (and whether to use NGC images), system packages and python packages. We need to set the docker image name and the entrypoint. The entrypoint is just the file that defines the model class above.

To build the docker image, we can simply run in the folder containing the config file:

kservehelper build .

To push the docker image, run this command:

kservehelper push .

For more details, please check the implementations in the repo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kservehelper-1.2.5.tar.gz (28.7 kB view details)

Uploaded Source

Built Distribution

kservehelper-1.2.5-py3-none-any.whl (37.1 kB view details)

Uploaded Python 3

File details

Details for the file kservehelper-1.2.5.tar.gz.

File metadata

  • Download URL: kservehelper-1.2.5.tar.gz
  • Upload date:
  • Size: 28.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for kservehelper-1.2.5.tar.gz
Algorithm Hash digest
SHA256 a3eb219409ea42c5ffc379a3ee8b19b53722b53e47ec4596cab1925444d65809
MD5 15225abe50532a5400fec7c6e34235f9
BLAKE2b-256 912ed19ffc739a208afb962c74ea7523dbc91efdd29be17d5ce67a75500c248b

See more details on using hashes here.

File details

Details for the file kservehelper-1.2.5-py3-none-any.whl.

File metadata

File hashes

Hashes for kservehelper-1.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 dc52f6bffc5177c83536819077d757f8501793502a6d6fe5f49d4fd4754046ad
MD5 1ea8d4950d0dff03179a50c7d3b1d64b
BLAKE2b-256 9cbc8ece363ca3475fdd05d39c9edc0cb1b2f201a2646a0249c5ba0c8b3b785b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page