Kubiya SDK
Project description
Kubiya SDK
Kubiya SDK is a powerful Python library for creating, managing, and executing workflows and tools. It provides a flexible and intuitive interface for defining complex workflows, integrating various tools, and managing their execution.
Table of Contents
- Installation
- Quick Start
- Key Concepts
- Creating Workflows
- Defining Tools
- Executing Workflows
- Visualization
- API Reference
- Examples
- Contributing
- License
Installation
To install the Kubiya SDK, use pip:
pip install kubiya-sdk
Quick Start
Here's a simple example to get you started with Kubiya SDK:
from kubiya_sdk.workflows import StatefulWorkflow
from kubiya_sdk.tools import register_tool
# Define a simple tool
@register_tool(name="Multiplier", description="Multiplies a number by 2")
def multiply_by_two(number: int) -> int:
return number * 2
# Create a workflow
workflow = StatefulWorkflow("SimpleWorkflow")
@workflow.step("step1")
def step1(state):
return {"result": state["input"] * 2}
@workflow.step("step2")
def step2(state):
return {"final_result": state["result"] + 1}
workflow.add_edge("step1", "step2")
# Run the workflow
result = await workflow.run({"input": 5})
print(result)
Key Concepts
- Workflows: Sequences of steps that process and transform data.
- Steps: Individual units of work within a workflow.
- Tools: Reusable functions that can be integrated into workflows.
- State: The data passed between steps in a workflow.
Creating Workflows
Workflows in Kubiya SDK are created using the StatefulWorkflow
class:
from kubiya_sdk.workflows import StatefulWorkflow
workflow = StatefulWorkflow("MyWorkflow")
@workflow.step("step_name")
def step_function(state):
# Process state and return new state
return {"new_key": "new_value"}
# Connect steps
workflow.add_edge("step1", "step2")
Conditional Workflows
You can add conditions to your workflows:
workflow.add_condition("step1", "state['result'] > 10", "step3")
Defining Tools
Tools are defined using the @register_tool
decorator:
from kubiya_sdk.tools import register_tool
@register_tool(name="MyTool", description="Description of my tool")
def my_tool(arg1: int, arg2: str) -> dict:
# Tool logic here
return {"result": arg1 + len(arg2)}
Executing Workflows
Workflows can be executed asynchronously:
result = await workflow.run({"input": "initial_value"})
Visualization
Kubiya SDK provides Mermaid diagram generation for workflows:
mermaid_diagram = workflow.to_mermaid()
print(mermaid_diagram)
This will generate a Mermaid diagram string that can be rendered as follows:
graph TD
step1["🚀 Step 1"] -->|"Result > 10"| step3["🔧 Step 3"]
step1 -->|"Result <= 10"| step2["🔧 Step 2"]
step2 --> END["🏁 End"]
step3 --> END
classDef startStyle fill:#A2C4C9,stroke:#005F73,stroke-width:2px,color:#000000;
classDef endStyle fill:#FFB6B9,stroke:#D7263D,stroke-width:2px,color:#000000;
classDef stepStyle fill:#EDEDED,stroke:#495057,stroke-width:2px,color:#000000;
class step1 startStyle;
class END endStyle;
API Reference
For detailed API documentation, please refer to our API Reference.
Examples
Complex Workflow Example
Here's an example of a more complex workflow that demonstrates various features of the Kubiya SDK:
from kubiya_sdk.workflows import StatefulWorkflow
from kubiya_sdk.tools import register_tool
@register_tool(name="DataFetcher", description="Fetches data from an API")
async def fetch_data(api_url: str) -> dict:
# Simulated API call
return {"data": f"Data from {api_url}"}
@register_tool(name="DataProcessor", description="Processes fetched data")
def process_data(data: str) -> dict:
return {"processed_data": f"Processed: {data}"}
workflow = StatefulWorkflow("ComplexWorkflow")
@workflow.step("fetch_step")
async def fetch_step(state):
tool = workflow.get_tool("DataFetcher")
result = await tool.execute(api_url=state["api_url"])
return {"fetched_data": result["data"]}
@workflow.step("process_step")
def process_step(state):
tool = workflow.get_tool("DataProcessor")
result = tool.execute(data=state["fetched_data"])
return {"processed_data": result["processed_data"]}
@workflow.step("decision_step")
def decision_step(state):
data_length = len(state["processed_data"])
return {"data_length": data_length}
@workflow.step("short_data_step")
def short_data_step(state):
return {"result": f"Short data: {state['processed_data']}"}
@workflow.step("long_data_step")
def long_data_step(state):
return {"result": f"Long data: {state['processed_data'][:50]}..."}
workflow.add_edge("fetch_step", "process_step")
workflow.add_edge("process_step", "decision_step")
workflow.add_condition("decision_step", "state['data_length'] < 50", "short_data_step")
workflow.add_condition("decision_step", "state['data_length'] >= 50", "long_data_step")
# Execution
result = await workflow.run({"api_url": "https://api.example.com/data"})
print(result)
This example demonstrates:
- Tool registration and usage
- Multiple workflow steps
- Conditional branching based on state
- Asynchronous operations
Contributing
We welcome contributions to the Kubiya SDK! Please see our Contributing Guidelines for more information on how to get started.
License
Kubiya SDK is released under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file kubiya_sdk-0.1.9.tar.gz
.
File metadata
- Download URL: kubiya_sdk-0.1.9.tar.gz
- Upload date:
- Size: 60.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: uv/0.4.27
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0e4d03cca6db48c7f4eeff685cc507a42aa53b04e67608c9d63e0d83bae6b4c |
|
MD5 | ed8f7968c796f73c60c440931887fff5 |
|
BLAKE2b-256 | 6d294a238a4bee2bd384d9b3ff173f91c04887bfa94f9b03f85484bb69ffc37f |
File details
Details for the file kubiya_sdk-0.1.9-py3-none-any.whl
.
File metadata
- Download URL: kubiya_sdk-0.1.9-py3-none-any.whl
- Upload date:
- Size: 42.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: uv/0.4.27
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc4447191732f082069f55807e1d4754f2cc2cf43ae9a558de385b774ba3a645 |
|
MD5 | 7fc064ad1d8955462ec4d59190622604 |
|
BLAKE2b-256 | 2d8565e29764271d1463157e06f257929dd70b970825528692db05bca3fdc4e4 |