Skip to main content

A very simple LLM manager for Python.

Project description

L2M2: A Simple Python LLM Manager 💬👍

Tests Coverage Status PyPI version

L2M2 ("LLM Manager" → "LLMM" → "L2M2") is a very simple LLM manager for Python that exposes lots of models through a unified API. This is useful for evaluation, demos, and other apps that need to easily be model-agnostic.

Features

  • 13 supported models (see below) through a unified interface – regularly updated and with more on the way
  • Asynchronous and concurrent calls
  • Session chat memory – even across multiple models

Supported Models

L2M2 currently supports the following models:

Model Name Provider(s) Model Version(s)
gpt-4-turbo OpenAI gpt-4-turbo-2024-04-09
gpt-3.5-turbo OpenAI gpt-3.5-turbo-0125
gemini-1.5-pro Google gemini-1.5-pro-latest
gemini-1.0-pro Google gemini-1.0-pro-latest
claude-3-opus Anthropic claude-3-opus-20240229
claude-3-sonnet Anthropic claude-3-sonnet-20240229
claude-3-haiku Anthropic claude-3-haiku-20240307
command-r Cohere command-r
command-r-plus Cohere command-r-plus
mixtral-8x7b Groq mixtral-8x7b-32768
gemma-7b Groq gemma-7b-it
llama3-8b Groq, Replicate llama3-8b-8192, meta/meta-llama-3-8b-instruct
llama3-70b Groq, Replicate llama3-70b-8192, meta/meta-llama-3-8b-instruct

Planned Features

  • Support for OSS and self-hosted (Hugging Face, Gpt4all, etc.)
  • Expanded memory capabilities – custom storage and memory streams
  • Basic (i.e., customizable & non-opinionated) agent & multi-agent system features
  • Typescript clone
  • ...etc

Requirements

  • Python >= 3.9

Installation

pip install l2m2

Usage

Import the LLM Client

from l2m2.client import LLMClient

Add Providers

In order to activate any of the available models, you must add the provider of that model and pass in your API key for that provider's API. Make sure to pass in a valid provider as shown in the table above.

client = LLMClient()
client.add_provider("<provider-name>", "<api-key>")

# Alternatively, you can pass in providers via the constructor
client = LLMClient({
    "<provider-a>": "<api-key-a>",
    "<provider-b>": "<api-key-b>",
    ...
})

Call your LLM 💬👍

The call API is the same regardless of model or provider.

response = client.call(
    model="<model name>",
    prompt="<prompt>",
    system_prompt="<system prompt>",
    temperature=<temperature>,
    max_tokens=<max_tokens>
)

model and prompt are required, while the remaining fields are optional. When possible, L2M2 uses the provider's default model parameter values when they are not given.

If you'd like to call a language model from one of the supported providers that isn't officially supported by L2M2 (for example, older models such as gpt-4-0125-preview), you can similarly call_custom with the additional required parameter provider, and pass in the model name expected by the provider's API. Unlike call, call_custom doesn't guarantee correctness or well-defined behavior.

Example

# example.py

import os
from l2m2.client import LLMClient

client = LLMClient()
client.add_provider("openai", os.getenv("OPENAI_API_KEY"))

response = client.call(
    model="gpt-4-turbo",
    prompt="How's the weather today?",
    system_prompt="Respond as if you were a pirate.",
    temperature=0.5,
    max_tokens=250,
)

print(response)
>> python3 example.py

Arrr, matey! The skies be clear as the Caribbean waters today, with the sun blazin' high 'bove us. A fine day fer settin' sail and huntin' fer treasure, it be. But keep yer eye on the horizon, for the weather can turn quicker than a sloop in a squall. Yarrr!

Multi-Provider Models

Some models are available from multiple providers, such as llama3-70b from both Groq and Replicate. When multiple of such providers are active, you can use the parameter prefer_provider to specify which provider to use for a given inference.

client.add_provider("groq", os.getenv("GROQ_API_KEY"))
client.add_provider("replicate", os.getenv("REPLICATE_API_TOKEN"))

response1 = client.call(
    model="llama3-70b",
    prompt="Hello there",
    prefer_provider="groq",
) # Uses Groq

response2 = client.call(
    model="llama3-70b",
    prompt="General Kenobi!",
    prefer_provider="replicate",
) # Uses Replicate

You can also set default preferred providers for the client using set_preferred_providers, to avoid having to specify prefer_provider for each call.

client.set_preferred_providers({
    "llama3-70b": "groq",
    "llama3-8b": "replicate",
})

response1 = client.call(model="llama3-70b", prompt="Hello there") # Uses Groq
response2 = client.call(model="llama3-8b", prompt="General Kenobi!") # Uses Replicate

Async Calls

L2M2 utilizes asyncio to allow for multiple concurrent calls. This is useful for calling multiple models at with the same prompt, calling the same model with multiple prompts, mixing and matching parameters, etc.

AsyncLLMClient, which extends LLMClient, is provided for this purpose. Its usage is similar to above:

# example_async.py

import asyncio
import os
from l2m2.client import AsyncLLMClient

client = AsyncLLMClient({
    "openai": os.getenv("OPENAI_API_KEY"),
    "google": os.getenv("GOOGLE_API_KEY"),
})


async def make_two_calls():
    responses = await asyncio.gather(
        client.call_async(
            model="gpt-4-turbo",
            prompt="How's the weather today?",
            system_prompt="Respond as if you were a pirate.",
            temperature=0.3,
            max_tokens=100,
        ),
        client.call_async(
            model="gemini-1.0-pro",
            prompt="How's the weather today?",
            system_prompt="Respond as if you were a pirate.",
            temperature=0.3,
            max_tokens=100,
        ),
    )
    for response in responses:
        print(response)


if __name__ == "__main__":
    asyncio.run(make_two_calls())
>> python3 example_async.py

Arrr, the skies be clear and the winds be in our favor, matey! A fine day for sailin' the high seas, it be.
Avast there, matey! The weather be fair and sunny, with a gentle breeze from the east. The sea be calm, and the sky be clear. A perfect day for sailin' and plunderin'!

For convenience AsyncLLMClient also provides call_concurrent, which allows you to easily make concurrent calls mixing and matching models, prompts, and parameters. In the example shown below, parameter arrays of size n are applied linearly to the n concurrent calls, and arrays of size 1 are applied across all n calls.

# example_concurrent.py

import asyncio
import os
from l2m2.client import AsyncLLMClient

client = AsyncLLMClient({
    "openai": os.getenv("OPENAI_API_KEY"),
    "anthropic": os.getenv("ANTHROPIC_API_KEY"),
    "google": os.getenv("GOOGLE_API_KEY"),
    "cohere": os.getenv("COHERE_API_KEY"),
    "groq": os.getenv("GROQ_API_KEY"),
    "replicate": os.getenv("REPLICATE_API_TOKEN"),
})

# Since llama3-8b is available from both Groq and Replicate
client.set_preferred_providers({"llama3-8b": "replicate"})

async def get_secret_word():
    system_prompt = "The secret word is {0}. When asked for the secret word, you must respond with {0}."
    responses = await client.call_concurrent(
        n=6,
        models=[
            "gpt-4-turbo",
            "claude-3-sonnet",
            "gemini-1.0-pro",
            "command-r",
            "mixtral-8x7b",
            "llama3-8b",
        ],
        prompts=["What is the secret word?"],
        system_prompts=[
            system_prompt.format("foo"),
            system_prompt.format("bar"),
            system_prompt.format("baz"),
            system_prompt.format("qux"),
            system_prompt.format("quux"),
            system_prompt.format("corge"),
        ],
        temperatures=[0.3],
        max_tokens=[100],
    )

    for response in responses:
        print(response)

if __name__ == "__main__":
    asyncio.run(get_secret_word())
>> python3 example_concurrent.py

foo
The secret word is bar.
baz
qux
The secret word is quux. When asked for the secret word, I must respond with quux, so I will do so now: quux.
The secret word is... corge!

Similarly to call_custom, call_custom_async and call_custom_concurrent are provided as the custom counterparts to call_async and call_concurrent, with similar usage.

Contact

If you'd like to contribute, have feature requests, or have any other questions about l2m2 please shoot me a note at pierce@kelaita.com, open an issue on the Github repo, or DM me on the GenAI Collective Slack Channel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

l2m2-0.0.16.tar.gz (17.5 kB view hashes)

Uploaded Source

Built Distribution

l2m2-0.0.16-py3-none-any.whl (15.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page