A collection of PyTorch implementations of neural network architectures and layers.
Project description
LabML Neural Networks
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,
The website renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better.
We are actively maintaining this repo and adding new implementations almost weekly. for updates.
Modules
✨ Transformers
Transformers module contains implementations for multi-headed attention and relative multi-headed attention.
✨ Recurrent Highway Networks
✨ LSTM
✨ HyperNetworks - HyperLSTM
✨ Capsule Networks
✨ Generative Adversarial Networks
✨ Sketch RNN
✨ Reinforcement Learning
- Proximal Policy Optimization with Generalized Advantage Estimation
- Deep Q Networks with with Dueling Network, Prioritized Replay and Double Q Network.
✨ Optimizers
Installation
pip install labml_nn
Citing LabML
If you use LabML for academic research, please cite the library using the following BibTeX entry.
@misc{labml,
author = {Varuna Jayasiri, Nipun Wijerathne},
title = {LabML: A library to organize machine learning experiments},
year = {2020},
url = {https://lab-ml.com/},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for labml_nn-0.4.78-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b1f0f05802e1b484742a88f3847ebd5760c7cf3deb8c9744f1ad356af0d39aad |
|
MD5 | c20ea0e726bc25b5f9d56ad81e2e923d |
|
BLAKE2b-256 | f592c454c38d613449e9cfee59809b83589bfc5463ebcf39a72126c268e31a77 |