Skip to main content

Amplitude analysis made short and sweet

Project description

Amplitude analysis made short and sweet

GitHub Release GitHub last commit GitHub Actions Workflow Status GitHub License Crates.io Version docs.rs Codecov PyPI - Version

laddu (/ˈlʌduː/) is a library for analysis of particle physics data. It is intended to be a simple and efficient alternative to some of the other tools out there. laddu is written in Rust with bindings to Python via PyO3 and maturin and is the spiritual successor to rustitude, one of my first Rust projects. The goal of this project is to allow users to perform complex amplitude analyses (like partial-wave analyses) without complex code or configuration files.

[!CAUTION] This crate is still in an early development phase, and the API is not stable. It can (and likely will) be subject to breaking changes before the 1.0.0 version release (and hopefully not many after that).

Table of Contents

Key Features

  • A simple interface focused on combining Amplitudes into models which can be evaluated over Datasets.
  • A single Amplitude trait which makes it easy to write new amplitudes and integrate them into the library.
  • Easy interfaces to precompute and cache values before the main calculation to speed up model evaluations.
  • Efficient parallelism using rayon.
  • Python bindings to allow users to write quick, easy-to-read code that just works.

Installation

laddu can be added to a Rust project with cargo:

cargo add laddu

The library's Python bindings are located in a library by the same name, which can be installed simply with your favorite Python package manager:

pip install laddu

Quick Start

Rust

Writing a New Amplitude

While it is probably easier for most users to skip to the Python section, there is currently no way to implement a new amplitude directly from Python. At the time of writing, Rust is not a common language used by particle physics, but this tutorial should hopefully convince the reader that they don't have to know the intricacies of Rust to write performant amplitudes. As an example, here is how one might write a Breit-Wigner, parameterized as follows:

I_{\ell}(m; m_0, \Gamma_0, m_1, m_2) =  \frac{1}{\pi}\frac{m_0 \Gamma_0 B_{\ell}(m, m_1, m_2)}{(m_0^2 - m^2) - \imath m_0 \Gamma}

where

\Gamma = \Gamma_0 \frac{m_0}{m} \frac{q(m, m_1, m_2)}{q(m_0, m_1, m_2)} \left(\frac{B_{\ell}(m, m_1, m_2)}{B_{\ell}(m_0, m_1, m_2)}\right)^2

is the relativistic width correction, $q(m_a, m_b, m_c)$ is the breakup momentum of a particle with mass $m_a$ decaying into two particles with masses $m_b$ and $m_c$, $B_{\ell}(m_a, m_b, m_c)$ is the Blatt-Weisskopf barrier factor for the same decay assuming particle $a$ has angular momentum $\ell$, $m_0$ is the mass of the resonance, $\Gamma_0$ is the nominal width of the resonance, $m_1$ and $m_2$ are the masses of the decay products, and $m$ is the "input" mass.

Although this particular amplitude is already included in laddu, let's assume it isn't and imagine how we would write it from scratch:

use laddu::prelude::*;
use laddu::utils::functions::{blatt_weisskopf, breakup_momentum};

#[derive(Clone)]
pub struct MyBreitWigner {
    name: String,
    mass: ParameterLike,
    width: ParameterLike,
    pid_mass: ParameterID,
    pid_width: ParameterID,
    l: usize,
    daughter_1_mass: Mass,
    daughter_2_mass: Mass,
    resonance_mass: Mass,
}
impl MyBreitWigner {
    pub fn new(
        name: &str,
        mass: ParameterLike,
        width: ParameterLike,
        l: usize,
        daughter_1_mass: &Mass,
        daughter_2_mass: &Mass,
        resonance_mass: &Mass,
    ) -> Box<Self> {
        Self {
            name: name.to_string(),
            mass,
            width,
            pid_mass: ParameterID::default(),
            pid_width: ParameterID::default(),
            l,
            daughter_1_mass: daughter_1_mass.clone(),
            daughter_2_mass: daughter_2_mass.clone(),
            resonance_mass: resonance_mass.clone(),
        }
        .into()
    }
}

impl Amplitude for MyBreitWigner {
    fn register(&mut self, resources: &mut Resources) -> Result<AmplitudeID, LadduError> {
        self.pid_mass = resources.register_parameter(&self.mass);
        self.pid_width = resources.register_parameter(&self.width);
        resources.register_amplitude(&self.name)
    }

    fn compute(&self, parameters: &Parameters, event: &Event, _cache: &Cache) -> Complex<Float> {
        let mass = self.resonance_mass.value(event);
        let mass0 = parameters.get(self.pid_mass);
        let width0 = parameters.get(self.pid_width);
        let mass1 = self.daughter_1_mass.value(event);
        let mass2 = self.daughter_2_mass.value(event);
        let q0 = breakup_momentum(mass0, mass1, mass2);
        let q = breakup_momentum(mass, mass1, mass2);
        let f0 = blatt_weisskopf(mass0, mass1, mass2, self.l);
        let f = blatt_weisskopf(mass, mass1, mass2, self.l);
        let width = width0 * (mass0 / mass) * (q / q0) * (f / f0).powi(2);
        let n = Float::sqrt(mass0 * width0 / PI);
        let d = Complex::new(mass0.powi(2) - mass.powi(2), -(mass0 * width));
        Complex::from(f * n) / d
    }
}

Calculating a Likelihood

We could then write some code to use this amplitude. For demonstration purposes, let's just calculate an extended unbinned negative log-likelihood, assuming we have some data and Monte Carlo in the proper parquet format:

let ds_data = open("test_data/data.parquet").unwrap();
let ds_mc = open("test_data/mc.parquet").unwrap();

let resonance_mass = Mass::new([2, 3]);
let p1_mass = Mass::new([2]);
let p2_mass = Mass::new([3]);
let mut manager = Manager::default();
let bw = manager.register(MyBreitWigner::new(
    "bw",
    parameter("mass"),
    parameter("width"),
    2,
    &p1_mass,
    &p2_mass,
    &resonance_mass,
)).unwrap();
let mag = manager.register(Scalar::new("mag", parameter("magnitude"))).unwrap();
let model = (mag * bw).norm_sqr();

let nll = NLL::new(&manager, &ds_data, &ds_mc);
println!("Parameters names and order: {:?}", nll.parameters());
let result = nll.evaluate(&[1.27, 0.120, 100.0], &model);
println!("The extended negative log-likelihood is {}", result);

In practice, amplitudes can also be added together, their real and imaginary parts can be taken, and evaluators should mostly take the real part of whatever complex value comes out of the model.

Python

Fitting Data

While we cannot (yet) implement new amplitudes within the Python interface alone, it does contain all the functionality required to analyze data. Here's an example to show some of the syntax. This models includes three partial waves described by the $Z_{\ell}^m$ amplitude listed in Equation (D13) here[^1]. Since we take the squared norm of each individual sum, they are invariant up to a total phase, thus the S-wave was arbitrarily picked to be purely real.

import laddu as ld
import matplotlib.pyplot as plt
import numpy as np
from laddu import constant, parameter

def main():
    ds_data = ld.open("path/to/data.parquet")
    ds_mc = ld.open("path/to/accmc.parquet")
    angles = ld.Angles(0, [1], [2], [2, 3], "Helicity")
    polarization = ld.Polarization(0, [1])
    manager = ld.Manager()
    z00p = manager.register(ld.Zlm("z00p", 0, 0, "+", angles, polarization))
    z00n = manager.register(ld.Zlm("z00n", 0, 0, "-", angles, polarization))
    z22p = manager.register(ld.Zlm("z22p", 2, 2, "+", angles, polarization))
    
    s0p = manager.register(ld.Scalar("s0p", parameter("s0p")))
    s0n = manager.register(ld.Scalar("s0n", parameter("s0n")))
    d2p = manager.register(ld.ComplexScalar("d2", parameter("d2 re"), parameter("d2 im")))

    pos_re = (s0p * z00p.real() + d2p * z22p.real()).norm_sqr()
    pos_im = (s0p * z00p.imag() + d2p * z22p.imag()).norm_sqr()
    neg_re = (s0n * z00n.real()).norm_sqr()
    neg_im = (s0n * z00n.imag()).norm_sqr()
    model = pos_re + pos_im + neg_re + neg_im

    nll = ld.NLL(manager, ds_data, ds_mc)
    status = nll.minimize(model, [1.0] * len(nll.parameters))
    print(status)
    fit_weights = nll.project(status.x, model)
    masses_mc = res_mass.value_on(ds_mc)
    masses_data = res_mass.value_on(ds_data)
    weights_data = ds_data.weights
    plt.hist(masses_data, weights=weights_data, bins=80, range=(1.0, 2.0), label="Data", histtype="step")
    plt.hist(masses_mc, weights=fit_weights, bins=80, range=(1.0, 2.0), label="Fit", histtype="step")
    plt.legend()
    plt.savefig("demo.svg")


if __name__ == "__main__":
    main()

This example would probably make the most sense for a binned fit, since there isn't actually any mass dependence in any of these amplitudes (so it will just plot the relative amount of each wave over the entire dataset).

Other Examples

You can find other Python examples in the python_examples folder. They should each have a corresponding requirements_[#].txt file.

Example 1

The first example script uses data generated with gen_amp. These data consist of a data file with two resonances, an $f_0(1500)$ modeled as a Breit-Wigner with a mass of $1506\text{ MeV}/c^2$ and a width of $112\text{ MeV}/c^2$ and an $f_2'(1525)$, also modeled as a Breit-Wigner, with a mass of $1517\text{ MeV}/c^2$ and a width of $86\text{ MeV}/c^2$, as per the PDG. These were generated to decay to pairs of $K_S^0$s and are produced via photoproduction off a proton target (as in the GlueX experiment). The beam photon is polarized with an angle of $0$ degrees relative to the production plane and a polarization magnitude of $0.3519$ (out of unity). The configuration file used to generate the corresponding data and Monte Carlo files can also be found in the python_examples, and the datasets contain $100,000$ data events and $1,000,000$ Monte Carlo events (generated with the -f argument to create a Monte Carlo file without resonances). The result of this fit can be seen in the following image (using the default 50 bins):

[!NOTE] There appears to be an overall scale factor difference between gen_amp and laddu, so the raw values for the real and imaginary parts of each wave do not match even though the overall fit, the ratio of S- to D-wave, and relative phase between the waves are consistent.

Data Format

The data format for laddu is a bit different from some of the alternatives like AmpTools. Since ROOT doesn't yet have bindings to Rust and projects to read ROOT files are still largely works in progress (although I hope to use oxyroot in the future when I can figure out a few bugs), the primary interface for data in laddu is Parquet files. These are easily accessible from almost any other language and they don't take up much more space than ROOT files. In the interest of future compatibility with any number of experimental setups, the data format consists of an arbitrary number of columns containing the four-momenta of each particle, the polarization vector of each particle (optional) and a single column for the weight. These columns all have standardized names. For example, the following columns would describe a dataset with four particles, the first of which is a polarized photon beam, as in the GlueX experiment:

Column name Data Type Interpretation
p4_0_E Float32 Beam Energy
p4_0_Px Float32 Beam Momentum (x-component)
p4_0_Py Float32 Beam Momentum (y-component)
p4_0_Pz Float32 Beam Momentum (z-component)
eps_0_Px Float32 Beam Polarization (x-component)
eps_0_Py Float32 Beam Polarization (y-component)
eps_0_Pz Float32 Beam Polarization (z-component)
p4_1_E Float32 Recoil Proton Energy
p4_1_Px Float32 Recoil Proton Momentum (x-component)
p4_1_Py Float32 Recoil Proton Momentum (y-component)
p4_1_Pz Float32 Recoil Proton Momentum (z-component)
p4_2_E Float32 Decay Product 1 Energy
p4_2_Px Float32 Decay Product 1 Momentum (x-component)
p4_2_Py Float32 Decay Product 1 Momentum (y-component)
p4_2_Pz Float32 Decay Product 1 Momentum (z-component)
p4_3_E Float32 Decay Product 2 Energy
p4_3_Px Float32 Decay Product 2 Momentum (x-component)
p4_3_Py Float32 Decay Product 2 Momentum (y-component)
p4_3_Pz Float32 Decay Product 2 Momentum (z-component)
weight Float32 Event Weight

To make it easier to get started, we can directly convert from the AmpTools format using the provided [amptools-to-laddu] script (see the bin directory of this repository). This is not bundled with the Python library (yet) but may be in the future.

Future Plans

  • Introduce Rust-side function minimization. My ganesh was written with this library in mind, and bindings will eventually be included to smooth over the fitting interface.
  • Allow users to build likelihood functions from multiple terms, including non-amplitude terms like LASSO.
  • Create a nice interface for binning datasets along a particular variable and fitting the binned data.
  • MPI and GPU integration (these are incredibly difficult to do right now, but it's something I'm looking into).
  • As always, more tests and documentation.

Alternatives

While this is likely the first Rust project (aside from my previous attempt, rustitude), there are several other amplitude analysis programs out there at time of writing. This library is a rewrite of rustitude which was written when I was just learning Rust and didn't have a firm grasp of a lot of the core concepts that are required to make the analysis pipeline memory- and CPU-efficient. In particular, rustitude worked well, but ate up a ton of memory and did not handle precalculation as nicely.

AmpTools

The main inspiration for this project is the library most of my collaboration uses, AmpTools. AmpTools has several advantages over laddu: it's probably faster for almost every use case, but this is mainly because it is fully integrated with MPI and GPU support. I'm not actually sure if there's a fair benchmark between the two libraries, but I'd wager AmpTools would still win. AmpTools is a much older, more developed project, dating back to 2010. However, it does have its disadvantages. First and foremost, the primary interaction with the library is through configuration files which are not really code and sort of represent a domain specific language. As such, there isn't really a way to check if a particular config will work before running it. Users could technically code up their analyses in C++ as well, but I think this would generally be more work for very little benefit. AmpTools primarily interacts with Minuit, so there aren't simple ways to perform alternative optimization algorithms, and the outputs are a file which must also be parsed by code written by the user. This usually means some boilerplate setup for each analysis, a slew of input and output files, and, since it doesn't ship with any amplitudes, integration with other libraries. The data format is also very rigid, to the point where including beam polarization information feels hacked on (see the Zlm implementation here which requires the event-by-event polarization to be stored in the beam's four-momentum). While there isn't an official Python interface, Lawrence Ng has made some progress porting the code here.

PyPWA

PyPWA is a library written in pure Python. While this might seem like an issue for performance (and it sort of is), the library has several features which encourage the use of JIT compilers. The upside is that analyses can be quickly prototyped and run with very few dependencies, it can even run on GPUs and use multiprocessing. The downside is that recent development has been slow and the actual implementation of common amplitudes is, in my opinion, messy. I don't think that's a reason to not use it, but it does make it difficult for new users to get started.

ComPWA

ComPWA is a newcomer to the field. It's also a pure Python implementation and is comprised of three separate libraries. QRules can be used to validate and generate particle reaction topologies using conservation rules. AmpForm uses SymPy to transform these topologies into mathematical expressions, and it can also simplify the mathematical forms through the built-in CAS of SymPy. Finally, TensorWaves connects AmpForm to various fitting methods. In general, these libraries have tons of neat features, are well-documented, and are really quite nice to use. I would like to eventually see laddu as a companion to ComPWA (rather than direct competition), but I don't really know enough about the libraries to say much more than that.

Others

It could be the case that I am leaving out software with which I am not familiar. If so, I'd love to include it here for reference. I don't think that laddu will ever be the end-all-be-all of amplitude analysis, just an alternative that might improve on existing systems. It is important for physicists to be aware of these alternatives. For example, if you really don't want to learn Rust but need to implement an amplitude which isn't already included here, laddu isn't for you, and one of these alternatives might be best.

[^1]: Mathieu, V., Albaladejo, M., Fernández-Ramírez, C., Jackura, A. W., Mikhasenko, M., Pilloni, A., & Szczepaniak, A. P. (2019). Moments of angular distribution and beam asymmetries in $\eta\pi^0$ photoproduction at GlueX. Physical Review D, 100(5). doi:10.1103/physrevd.100.054017

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

laddu-0.1.4.tar.gz (57.0 MB view details)

Uploaded Source

Built Distributions

laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.4-cp312-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

laddu-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

laddu-0.1.4-cp312-cp312-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

laddu-0.1.4-cp312-cp312-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

laddu-0.1.4-cp312-cp312-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

laddu-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

laddu-0.1.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

laddu-0.1.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

laddu-0.1.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

laddu-0.1.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

laddu-0.1.4-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

laddu-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

laddu-0.1.4-cp311-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

laddu-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

laddu-0.1.4-cp311-cp311-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

laddu-0.1.4-cp311-cp311-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

laddu-0.1.4-cp311-cp311-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

laddu-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

laddu-0.1.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

laddu-0.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

laddu-0.1.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

laddu-0.1.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

laddu-0.1.4-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

laddu-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

laddu-0.1.4-cp310-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

laddu-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

laddu-0.1.4-cp310-cp310-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

laddu-0.1.4-cp310-cp310-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

laddu-0.1.4-cp310-cp310-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

laddu-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

laddu-0.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

laddu-0.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

laddu-0.1.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

laddu-0.1.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

laddu-0.1.4-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

laddu-0.1.4-cp39-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

laddu-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

laddu-0.1.4-cp39-cp39-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

laddu-0.1.4-cp39-cp39-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

laddu-0.1.4-cp39-cp39-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

laddu-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

laddu-0.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

laddu-0.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

laddu-0.1.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

laddu-0.1.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

laddu-0.1.4-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

laddu-0.1.4-cp38-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

laddu-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

laddu-0.1.4-cp38-cp38-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

laddu-0.1.4-cp38-cp38-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

laddu-0.1.4-cp38-cp38-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

laddu-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

laddu-0.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

laddu-0.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

laddu-0.1.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

laddu-0.1.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file laddu-0.1.4.tar.gz.

File metadata

  • Download URL: laddu-0.1.4.tar.gz
  • Upload date:
  • Size: 57.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.4.tar.gz
Algorithm Hash digest
SHA256 982a7d58f552c18de7a93f819c240af997976703ae775d2867a32d31bcef02bd
MD5 1c6c3cf2971184907c5d17c5d8a4bad6
BLAKE2b-256 44447461bcd34a15f3d3fab326993d66b90400d7959ddf27b7c5992c4c63174a

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b2e8b3ef3e26ba3ff9025a0c8b2638d356faa9475697607ced1c0ec07f832dac
MD5 4fbd84df79499cc91ea8d26e52b82b74
BLAKE2b-256 10e2ab8bb888a32b395878453285c5ca00752bef0ce7ce529770d103aaa257e5

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 74b1187c1448c562b990127aa3112866be0dfb1e000403ab5c40c2ea7992ddf5
MD5 ff3a209406ea39afd93c7d1090d4e6d6
BLAKE2b-256 3795bef48019294ef90472447e75b85bcacca657a798e8757d1d8233a8aca2c5

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 8c10381ae8bf52708e181600b0f2ad1620854d1988b1df3c5efe7755ba604f3b
MD5 6c7f17dffa455e68129054841b15036c
BLAKE2b-256 edb31e93fdf7195d1e8a9fcb61f0deca81b3917824daa137743270871bfe4b64

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 35fd8624bafbf55a9546a274185242ddb32a54a60bda4d719bc86f4d23b526a0
MD5 c17bc2208b63f8ab92ed26983424a22b
BLAKE2b-256 35366642199f71716c495c2ba3e4f314be27bac8ea3eb12ea93df4d6ae235864

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cad3cb171b7ce6c6e8530d693a46e6031405b4036dde1e7f2418f7d0febcf367
MD5 3841df26701b3b8951103a5f1bc7b285
BLAKE2b-256 1299a8e9f59862d86cb2d523ebb210d9eed58280e8aa251aa162d8f2862bf361

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6786e62beeb62f01e726eb9d26c6a8339b3b30b156f2933396d1e3e3a6184c6e
MD5 beaa4b4757e12d8922aa64f08625c0c4
BLAKE2b-256 536abf0955035f877bd3aeb24b2d913bf96860a78d4d1935dbaefbf1e55b42ec

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ac8ce4a1cca05527c24cfe91e07c298e49fe907a27fbfb69db1679d8a6a65748
MD5 812976b066f53623b6662e0007f35de6
BLAKE2b-256 c3b9e8a6ddf2aae5d21adc4b588b9561fc419443320969685a2e907f7345b08b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8b439a52ee6c308fbe4311e2641aed2fac9580c9cb8b362ff4ac6957cfb11431
MD5 458fa2dd37a8b26dbbcbdba9cd307c7c
BLAKE2b-256 2e6b55e40cd1d951c7372fec7526f8675694bc693b21a0197d645148af895169

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe437b7dbd25c45490e83dca95035a4d08ace35a7600eb0dc1025be97dea7b24
MD5 504268731066ff6a4f1cbb3133452179
BLAKE2b-256 859bd0f531650b07679d7ed59863c9acdda77b5a5c068d446071f92c3e133eb4

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f540423faef1fc93143f359fc3c44327eb78ccd65d79f9b4eed2b15ec7aa675f
MD5 157769d6f060639fa7ce41d05f6b22d6
BLAKE2b-256 593161e51520ac6f97a164e608d8ee9822fcb5eace1dc10a142551cae0058b14

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7d5451bc10884b82a047d6d1fb85e8cd164f10fb1316d5cb296a01dd2f7580cc
MD5 b2bfa98551bb16ab510d07d8c7e5bc61
BLAKE2b-256 bef60d2272741cd348098c0238183c10d3548cedbdf2e320431479be3d68608b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c5ba32ce04b1339637502f1ccf3e9b9d990d4822c6b9f18cfe847d9828889b20
MD5 0823964560b6e8ef6906c4da22907c3f
BLAKE2b-256 e46bef494d4b4ee3d06a48ede8efd1ee310c98d43ade01831fbe7036e11f7c3c

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 d9126a9a9759885e8f3344e3ec9970f9bb6dcfe3c8103ebb2a59e8421683ada6
MD5 4c15d40a12fce5de92540b7a750ed23b
BLAKE2b-256 d1efa8edfce8927a78d1790ce753b4eb3243acc807b8e51c5fcb580ea56a79d8

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b37940a4565cdf6c6a1f7755c3166b1b04dd0a13592998cb4909871aada22009
MD5 a036d5e870cec85ee097146256d71a52
BLAKE2b-256 770ffdd21dc33dc0be2946a78bc886ef29505a65c850d54774e197678bca649b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b168d879b98538c4653f7fbb88c6bfd172cbf63f7d4b4d4265652e48ebd79887
MD5 b121ef683fe1e21c127c6ef409448636
BLAKE2b-256 6cf011744e8f4871e0a7d4f4593cba3d4b4d31c90a3d1632a702595a83367b53

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e124b840b7bfeb325d25ce264e078d98d1847093857b4660efc07deae23a87de
MD5 431ed714510b87ad99d8ee95c89cdf50
BLAKE2b-256 80db559bfb827ad507e3eb3a24b0dbadc3970d5ad3f9dadd8db8851e7e5c5848

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3f3e5aea0eb53f0629303e4d05d00b2f80f5c2407561772068ec4398ada2a6f2
MD5 c61a200275af475d0f0735e6f50fe155
BLAKE2b-256 8b857b845227840f219eefb86917a44d2d0c2bf31e7a3691d0bdde9f92849063

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 3a31c180a9d3bf281aec7f9be5b97c08939d361ec0c8c83f3ffb294bf81d52c3
MD5 cd740c0e9bd9c0c13c7b90f8b6095855
BLAKE2b-256 457ffc8cfa8cb26ccda7bb2753dd2262499248e3ab9f3b2af97657daff26c1ad

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7345575758182e688f74d63bc5a278f57a0d457868a103195ee9cc9548367baa
MD5 5347718af21758e9e7501f69371ea3d2
BLAKE2b-256 2395e6b9e73bc6288a9da91859c610b4cbd14ff8411bb9ef10e7930a04138d74

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f8dd0ce5fb0a63013dd841c9c53f0404e6e77b4bce13c6447b510c3dd02dfad1
MD5 2511a0d23f2a343ae94d38ff89896ba3
BLAKE2b-256 fdaa75f932d6e114402fa93252b461ed80e9f90106a1e1ae4e3610353b554060

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5de5efd2b4e80b8e445566f24b4ea5692fedd7a96724938edb72a1be0430d166
MD5 2db6a60b270a19975fc6973124804fac
BLAKE2b-256 02c13b901ffd4d9d2e025ef118debe5b5a2a526f0cf7e6bbd8929a391305a934

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e176722d21658e053797ecb7d8118262def65b7dc583783d59e091fc28b9f900
MD5 5b603656ec8b44e0304bd63e04c91068
BLAKE2b-256 1bc5e1e5932dbc025bf434d41d7db30d7d5e2b44bc1015fd0dfffc80e9173725

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 ebdd70242a18ca2a995af35a02541c6fedec0d11c6d2f925bce4db4f3869b62f
MD5 f4c5c40fa27987c807bb4287b942d1b4
BLAKE2b-256 83eeffacc233b065a80b88f9a7a5f3aadcfc0e035f3cbe8180fd0dacf62e7365

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9f4f07bc7656f66519c40f6b991d719bb49f736e85d9832b8639336dcba5f7db
MD5 2f8a701bc779e4d8d62bf1422c46600f
BLAKE2b-256 5d0148a37b58f1e634d80f9df9d2056bdc848bd4fefcc2f25143354d6c167fcc

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 29389d0312263b5ccd6b4b97fa65e37446126680cca3e84610d3b39d7e8d5a6e
MD5 a591ee78196db4fc9d7f26326eccefd9
BLAKE2b-256 a12db15115d91e1157903785aeddbca252d7661a28da02612eead734a23c3b8d

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bd35753b808db04232cc29a27e82a8f68e19e239fe1cf60d7683d800d08802cd
MD5 312e5660992c62e939e42707b46a7e80
BLAKE2b-256 39c6a2149f6eb78e6c705aab132129e041960a9bc900e6edc4dc8e00b3fe7a41

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 49d07924ff4d08484ef44100c28884447178562eb1e7b2dcce62b065f580e7c1
MD5 ecf73a43b885377b52bb9bb7d2ce27a2
BLAKE2b-256 ab098f99edc073eeaa1f19910b7b9a277a5bdeacbe1187e282ff734a0da6e538

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da90d9cd0d8797bac70628fe54d022426750c50b287cc7bae67edebd9d1baf2f
MD5 42e1b0771db91b16123c12e014f2eb5e
BLAKE2b-256 9b0a12db427053c314793627e8a1b219a0d0c272c499be99def0af29cea8ae63

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.4-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.4-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 9e846ce4fa6f378bb13012b26e32c5e93c64f5a50a8121f5bdfc33fc9d1236eb
MD5 9be3b8fdf009f15845a4a51196d3e797
BLAKE2b-256 195182a22f911f369736b05d164b1e6aee10735bcdd5006c59fa8836a906b294

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 80a5f1930174a6d0675d207ad9fa0f808ab73c0f31bb340927fa43bc829a08e2
MD5 85cf1af7b86450a3435cacd0a570edb2
BLAKE2b-256 4171aa6f6584384a1f5685bcf7b523c69034ae96b1cb4cf891a6e24886d28b5d

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1b8e8c31d87d37f0abe31da1327327f1efefb6441fc026e168965a1f891b03b4
MD5 ea5066c3a5024318e5761923954d4809
BLAKE2b-256 6fdfaf738c6c837ed837a00ef6eeb3b5104ea3e406e08d2f760bf6a506f14faa

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 23e5d39a6f5c2714fd88b16334b65362efd0a0b45d4713e92c13597c52df01a2
MD5 2ba7a935661977d999dcad556b4d2a6b
BLAKE2b-256 ebfa784a29679a220733056001c9e7339b234b38fee2cd5c5367b2df8152dd73

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 69eabf4ad62388c1336a22c35840e3c2026659e8163a7dc6eddbf6b5346647ec
MD5 79e6f8a1d6e14284803a152ecc292505
BLAKE2b-256 d874a8704b5fb9cedfbf95145cbc54f2a064e256f3b0d5e0a9f2d48586f8b353

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9b1a89aa349f332a00e9f311b1c98ac53956904aba554b5a0192167cdb59cfe
MD5 7db3157a9414e9681f77495475f9a3e0
BLAKE2b-256 380aa4325bd9b9414a39f6a8d9020a5a4c8ea1860447baaf81139c7064821e7e

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 01285a370611dc5e9aea9ae0ea4f556b27776525941c875adc87c1cbacee5714
MD5 237a0e30ddea9c4e205eed7a69fcd03c
BLAKE2b-256 26aaeade95861c8db7cae583cfa85b78bfbbb9f9081221cc0ae0359cfd0c7da4

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0795b57d33c4c419afb887bcb2eed9d90536aefe1f0ac7ab0153e90febd18fba
MD5 a5bd76493446753b065c6e31c4176cba
BLAKE2b-256 99650b6f9d28c1bee65b4fbd47283f843ee38a234eace6b1afdf6ebb185b2a47

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 aebc08c107df640c638157d6e1fa3580575db4735f5bc45fbe2a23a5f2e4e295
MD5 a96fc976a30fa980c62882bdf43e516e
BLAKE2b-256 3c37df46facac17b51c6c938f5ef760b26160bfa2cbbe0fca382ae4bb1f57663

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78c5527bd11ee6f8b550b0e0af0046b75c2bc132a3b812cb3804aa114e079939
MD5 715aad0d87f84179ea49b38a9a254f6b
BLAKE2b-256 c9ac0fc22b434691bf3cfb4ceba47cafa03b506302ea765ce299c4e9341c696f

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 039328ac4432946d957661ee1c0034f884abeecfa812c5334f6efa19ee219247
MD5 2951e2f08bba966766045c321316da00
BLAKE2b-256 894c40bcc382239b35da248ba487401e0100f62247593472236dc4a07a42f5dc

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36674901281b51c820b62681bcb30a8c22b35b32b167b39ec3ee1190c3ddefa1
MD5 b5c2f139e9390a0a72a933122a7f8afd
BLAKE2b-256 35a83fbdec829e967e0e41c7dda60ab2b06e9476c63052ba63c61b4498eddc0b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5abf6c9dc4dc4a561517603be1d95496652397bcf2e6edd79b41856df86fa1ef
MD5 4d6543681409b3f318fdc195adf5070e
BLAKE2b-256 41573d40f6d8b80a24e7d48a3cdb12a2aa375ba93f46414de52d3a63df8b606b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.4-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.4-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 577853d1a35c2216fbf944a2b83012bacbd2f0aa58087297d89bb564509a47b3
MD5 8aded38b031ee58820c8451721a4397d
BLAKE2b-256 c93c80944d003dcbc4e118805322f34e6e8a8c4823c8e2d79906529c46fac1ae

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c13d0f6961d44f0836376f0a4114b84a5900ca72e316f2f19b1a91825ad0559a
MD5 15b6eac5d77d74415f5ec07dc21d41f5
BLAKE2b-256 de2b5c7325f3638e930e3cca2dcc3f991533edd0949285c8fbb6bdc809dd0d80

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0a4121bc2f5383a424f48ce35f8e71e1ec50377b201b8788da45e32f84166bca
MD5 045ea0259d1dd06b63f0f3d68b927551
BLAKE2b-256 168fe7214e02ea978b41b8cfb8525b37a5ecddc175353f1af36c008f63a989e7

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 7f568c8ad594066e4a394dee7609600006de7f432e6961235ba3a5f49ca26633
MD5 18b777229552e8bb72d26529e3a26226
BLAKE2b-256 38a21fda409492024e373ff3729057e54b9a9ac936a6387761ece38397efe959

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 01697d3640253dede8bd99949d7d52b71073d30fdecd4ab8b99a0d2ea1091c7c
MD5 f9a26686123636034123de415dde927e
BLAKE2b-256 6b3858e1e6d131572d0b67d234407f2cd4dcc2f27c387422107a5db8d3cf365c

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5d68885b569f3221cc6bfa53a0243edeb02a11b5920ef465ef4c80263ca7cfb
MD5 bc9d7cb659a2d6004e4c95011e00162d
BLAKE2b-256 65e85dedd446e218dffb2664c477a8a59cb9dad59228574f61e5b059a68176aa

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7f2cb29dddf5d97ad69354c640aea68eb7e02fef95c2bfbb1b01b0ad07c5e33e
MD5 6b59aa86bfc7554b79a3892ccf5261e7
BLAKE2b-256 b09a016ddde46a3688d9ada8df2cb0565fe57cbfd06d9dfed5e15eb654099f82

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c14a4f3b6a9d66c6f1d50090b7732e3984c5b1c261842ad670daee16bced5a18
MD5 45bd518024002c7e45353e5a2b2b369a
BLAKE2b-256 744b4a7d6a8132ad3551d4890c411128311cd10365e20efc2beee5b2dbb665a1

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 311852ce3cbbb6ec37058893b59013a65faa8af6553bca816749829a54fd3d22
MD5 581db67dc88dd4cccd31a0481f7b1ab4
BLAKE2b-256 7138c3b7c1641650fbb190bd0d8086723ace09cdae71b5fc0b7a78e64c8326cf

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a2acc44a3ebeda8e58d17a9434a7e5be72adc88dff8f502d7c151269a8bcc370
MD5 0ecca2ce54becf4f38c50a305d7bee2c
BLAKE2b-256 bc224e1271116af5a6131163bf7207f85c425f9fb94628ac84ca8b7fe6762c0b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 83171b5ccb119c32dcd828ab8255e063aaa61b6f7d160ab608174a3eac17c751
MD5 dea6af7ce6e33aaf63eb07f102481fe4
BLAKE2b-256 8c8dea8e1ef6468409c81a93f36cab8f499d930281d6447fbfcc06087c7559fd

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e7cde0c2f2251def35ea21762eae5fbadcae1e6cdf0b77663ced720b6162a93
MD5 76cf33d3b700676535fbdd256b2cd791
BLAKE2b-256 d0e5a7d20d9e235e050da4383cc8010622b2f1eb6cb1d4e30bd91246f9de673e

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5d5d0cdde0205d707bec51a4112b56907f601bcc566b505e58c6d21a4742abb9
MD5 cf7b8f6dddeb98f5fa2355fe7b159df8
BLAKE2b-256 3ad0e4dc7ca3c2aec68efb82d7ffefcffc01ea0f604505c56ec05a1b39ece4a1

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.4-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.4-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 385d47b98af36f4d55d78f4cf98611e5dfe34c345fb0839af024f5a49225be89
MD5 fd1a31c23b80e94e70be69f38fb51d13
BLAKE2b-256 c1b1adfab870081956c925d6533a7d38b7ad3ffeb12d99f9b930d230af06f79c

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e2772502e1543aa3626713797c2c0f7677a4cd9e963705363428e55aed62809f
MD5 716c146be22939e14847d94d0a566e9d
BLAKE2b-256 184a12cbaebe12160dc4be3c94b198082d655295dd64a58bdb04486cc182ca83

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 66d696ca900b6ae8a4378e194b06bc15d58ded6a4048d2f7146bbd3954ab866d
MD5 65f209341cf0ffa208d80253ce8aa768
BLAKE2b-256 59addd61bb396b9c4a84b06a27fc0e4c8c34a120d5697c0a9cab462bdf6f1877

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 53713c6071ae7de166138378af100b33e5e77c002768fc30ccd1b108f1bb3302
MD5 7c134592988e16f7209836e5b3585e01
BLAKE2b-256 93157589683887badcd49d3e3b31a1f65d3966a33bdd1b0eaae7c94aa45db181

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 41626d45542f8a794742a60f73176b66690242146c82fd0287992127237fe5e9
MD5 578345d5781d40b3376562e3b81c2496
BLAKE2b-256 054ee29b1d73f708c99fe06889ec47259ba55d420080f3e3c3406b027274a900

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b1235af5411683fc6162cd7de49d36317df51aa0c7e9a5f3cf656a5c3815826
MD5 4f86913aa80e2eb33f5142ed9773e282
BLAKE2b-256 fd741670510dd1b41074093e440e9ed652c84a8aca6c0b3fe8323e81cef8770e

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2de18b49ca81965f987345448b0bd35518257bed2f0abc6bc70def9c8ef53855
MD5 f7ee054d7721c2b69354d9afcea1bb50
BLAKE2b-256 917913ea122fc5135f198fa189a59da65aabdf44ee520f91d8ec42b751afdd91

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 96fa981035553cf1f1f0675331444e08142967d7ea5625d73c7e86a3163a8e07
MD5 2f24d12b3091581dacd7fbe4fe068740
BLAKE2b-256 faf07aec326e20a7834c91f1a6321b0a600dab131c127b7b84eb447123cf5936

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8dc77af64504de2df1f8deb663f6575bca6aa605b22f84c759509bc7c1815be9
MD5 8073d4668c72ced1f8eea2312151f34a
BLAKE2b-256 3392f90cb0322420379adff4427b2c3b253964b42599ac442c89f65becaaf9b6

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 56697b78babe93c9511a0477f9e34415e95de8e33ee97c0d5250151a095d97a6
MD5 de86e4cc6b7c107ad4306cba2b18e956
BLAKE2b-256 bdf79e888757bf362ef1bf47299f00d9f46a5be1cbb292cf9f5976844a501fef

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ac9d1546872e7fc7b206062d63dcf4791ea8290e2acc26ceef6a5a00f49f6284
MD5 63b730e48bf492c8bb3739ad4cca9040
BLAKE2b-256 49a9e014f64e66e8047b8a864d3e5231d07e507e5d215113cdd63e1da544f250

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5a17355221710fe50890cb9dc518ae9e5fa09325fe220971f641179a9f8d5cc
MD5 e916fa33b7c501735d63e9b30a1f0d8f
BLAKE2b-256 199ad91a016366b188c1032cd95be589d490cd7877319442aa08ecb8455e506a

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.4-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.4-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 590bb68d016cfa3aeba3d089f8209ad2d85c93fe4fb9f6693d3fe6fccb022fde
MD5 c27d5b5ab8eed5c8aa54857b17e2ff3f
BLAKE2b-256 90495a2cda0142bdac604fab9f07dd447f8d2dc71e5f257225d2a69990fc245c

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7b0ec76bbdf3c4a02c1071ad31acc685db32b62b40f2acee423c4c44555221f8
MD5 535189eeed51b3bbde65f3654793d8d2
BLAKE2b-256 5db6b895043eb97f4236d5c58dee75aa31f4b59690fd794b7e5543de02bae164

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 87c323fd65db304b17c652aef7fe8085b034e025a4d5c567ba648d6f0b95141a
MD5 d6dce345dd668cb7bd03ace533be7786
BLAKE2b-256 e1674b3b9beb340e38a99813e861d057606672608797f68c5936ba73035cff12

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3cb0821e77f76ba1be09c679c602ea9e9465c106c2d84fb74f681d3410d8d0f5
MD5 e260772f189b25562437e814cc3b8418
BLAKE2b-256 b42d38aca7411dfae0a15d9a17be7e666c831cd2c324f8804fbe84ebb95ef07c

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 367b900bfde5f053fa0a6e5937d014714633b24882870aef9c9d1f437c3d8212
MD5 c7a706d4ffe171c0ba80bf9495d23c08
BLAKE2b-256 efe276b38ea66ac40ccede381def7cdd9833d4902cca3b48d42a5bb9955ea820

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adf7c763102f96ed642fe8e1026e023461832c62efe412fb8b005ba13230a7ed
MD5 030d682a1af03424a8cc0f3af0b5e550
BLAKE2b-256 b16ab991aab02170674b5ff5f979c754f3525eb93c3778171209643fb774d180

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d7ea0bc616c17eeeecab37633b3401dd10d7571e27a8c85582f08ced4c380c08
MD5 c75550a3b00781e50e799d0aa991a448
BLAKE2b-256 267b22dfb4c077e1523bec8595d1be8bba1d5790223f2dff221faec7ee719fc3

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6876e1054a4ff40e264aefc1fb32a2962b2c5c3e7c0aee43f591bcc1653f5373
MD5 c68ee253538068d35fa0bc0f0602bb30
BLAKE2b-256 d2826a91b8896296a71b858113a881a23b9d36d6c1737a346ced3877a55f8644

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b2bf34e34d255b751e77cbace1b929e1e96ecc33ef108214ee2fa7cea27d2247
MD5 7307823858e845ef463fa0ecc219cea4
BLAKE2b-256 2a5916ab2df53e0071980e1501e6b7170801bcd35d8ef798c4bf5061cee3fac0

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d605e0dcd3beba56f69748a9f9e936cd2c8dcc39840f68d646e1a114392e7df8
MD5 83000ed588140e796320ff6396da0655
BLAKE2b-256 1e282c2d49faf8dc536ea2e57cd9937377e3d7c3ca8e84ee9126a27dd403a0c5

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 68a4a6abf2e6c7a791c3552cbe6d3e39930eb64afc9a644cd6e92a2c482a776b
MD5 34166e13bd2dc00f5c3ff51381a9d95d
BLAKE2b-256 a1e8b29c53f62093633f3770fa5f14eb9e8b55cc64bf7491297056ea3c725d6b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ccaadac8a402c32b429c05e708b2107d5b75538a94339dc5255107ce65928273
MD5 a9446a0bfd03f9cd599e0005e9d64016
BLAKE2b-256 e92803b45f65d45d26c63f9f91b1aa9b96acaad52f57538e4c6c8938c18f9e7c

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.4-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.4-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 63ee73b428754eb45c8f1525627504bf345827bc970a505279f04d31f686ff8c
MD5 afec62b25446622ad2c86600878ef190
BLAKE2b-256 e9b6a4e623ffc98b3ec1211d154166b15c5142f018faf969242ebbd2ef5c9f47

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0f75a191a70d181028952a2362c9e7fb454c0e30b1741879d01c755a1992a19b
MD5 beca3792f55a457ffea97c531bd2a42b
BLAKE2b-256 b33f6e35882d38656d45cd637aab43bde1a9f17e83784ee35d57c1bce543e934

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1648131a32c137ef3969118fe136c4b866d9a08f81d4ed3b4f4f7b3c8f62a97a
MD5 9160f722e6d6def91e2b056077af9540
BLAKE2b-256 373fdfc74facdf74e34d35ee7957ddfee368b016c499593bf47100617409b9f9

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 11844d5529b344673faa3180e18149d184099fdb9a1ad4e38ad190a82372cc39
MD5 3855541eac188f0e7fcd4c86a3acafc8
BLAKE2b-256 9dccc0516e98a066d48e9ed2d99f38d4deb5a48a30bb6448958e04d10d246a08

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bf02f38f8c508b60240c1b27dcb40bbf211a0b5a2d5b690c7ef171064fa74187
MD5 2f2948ac3224f949590d14b549a8c7d8
BLAKE2b-256 2fca256f0c42c2ba8bcb5c21b737d60f32654b3e29d22ad5af318c76f074dd9b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7da8d5fd105526cd84af0081360e61511115fcc50b8ef1504498ac82f3c04df4
MD5 bc0e6dd2d866af2b461f1f18f24dd095
BLAKE2b-256 7b24c1bd85dd28637a41791bf16aa480a357200f936ae43b149139dbf0ea0b41

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 510258c1e97d0b2618f0e4f43f2479c5ddbf215f57f6bc6bca92eebce52b2518
MD5 5e55104db52a00277338f1042b5f03b8
BLAKE2b-256 46db54bf827c1fecd205dc29f3a50c5497c834297e7e596b23fce34fc13ff47c

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5bf4e26d3eeeb6b0a320b963b192a599d1c41b693eba9e0944de5d5e2b023848
MD5 351769325a93625ba7c0f7e0e476a5ec
BLAKE2b-256 d2adacf777adb6cfb65d1460ab4e4d4994b73ff35499ace497a83f427201d63b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b02094da33a61d0669e684c922ad8c0145f79ec41828d530a40743f90a878f8d
MD5 29426ff83d99236767b78d9c9f2b0251
BLAKE2b-256 6768f26dab82b9a0cd26110205fa4ce50d1e9e693b4761fc4a4c9faf80d2617b

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be85fcfbbd6400e4dcb5dfbf00bbfbf850ec06a652569d0728278197ac3b0f1f
MD5 9209582ff4f68b9dac9cc72b68c7a756
BLAKE2b-256 77059356d1a79e471622664401033afd152a21c00c70a4d6392317a0a9e9396f

See more details on using hashes here.

File details

Details for the file laddu-0.1.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b61ad69248fe1970688d3f546038301d52163ca1de88c95bfed1da3d92087fd6
MD5 3fb5148fe23fbb02bf3555f549e99ca9
BLAKE2b-256 84d2876c8cf72991e9efa25564c50abdf45b66c56a295f4fd29a9393833723d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page