Skip to main content

Plugin-based component modeling tool.

Project description

https://zenodo.org/badge/DOI/10.5281/zenodo.154179.svg https://readthedocs.org/projects/landlab/badge/?version=latest https://travis-ci.org/landlab/landlab.svg?branch=master https://coveralls.io/repos/landlab/landlab/badge.png https://ci.appveyor.com/api/projects/status/6u0bj0pggxrmf7s1?svg=true https://landscape.io/github/landlab/landlab/master/landscape.svg

landlab

The Landlab project creates an environment in which scientists can build a numerical landscape model without having to code all of the individual components. Landscape models compute flows of mass, such as water, sediment, glacial ice, volcanic material, or landslide debris, across a gridded terrain surface. Landscape models have a number of commonalities, such as operating on a grid of points and routing material across the grid. Scientists who want to use a landscape model often build their own unique model from the ground up, re-coding the basic building blocks of their landscape model rather than taking advantage of codes that have already been written.

More information can be found at the website:

http://landlab.github.io

This open-source manuscript is a gateway for entering the Landlab world:

http://www.earth-surf-dynam.net/5/21/2017/

After installation, tests can be run with:

$ python -c ‘import landlab; landlab.test()’

The most current development version is always available from our git repository:

http://github.com/landlab/landlab

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

landlab-1.4.0.tar.gz (729.1 kB view details)

Uploaded Source

Built Distributions

landlab-1.4.0-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

landlab-1.4.0-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

landlab-1.4.0-cp36-cp36m-macosx_10_7_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

landlab-1.4.0-cp35-cp35m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.5m Windows x86-64

landlab-1.4.0-cp35-cp35m-win32.whl (1.5 MB view details)

Uploaded CPython 3.5m Windows x86

landlab-1.4.0-cp35-cp35m-macosx_10_6_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m macOS 10.6+ x86-64

landlab-1.4.0-cp27-cp27m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 2.7m Windows x86-64

landlab-1.4.0-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

landlab-1.4.0-cp27-cp27m-macosx_10_6_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m macOS 10.6+ x86-64

File details

Details for the file landlab-1.4.0.tar.gz.

File metadata

  • Download URL: landlab-1.4.0.tar.gz
  • Upload date:
  • Size: 729.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for landlab-1.4.0.tar.gz
Algorithm Hash digest
SHA256 b0f04e7ddcd6fbeb550a6f7430906ce3059f86262fb5d97845892a5ad0f46aba
MD5 76a603f1eeeaf4aeedf6eb650e6538b9
BLAKE2b-256 0cdd5051b92b41201d014093dc43f557f57e80dcc55b9001d54834c580b4b724

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9eb2ea21c610770ab7101a683ac764124bcde8a160f700cfffcb2b24da3dd4fe
MD5 9586b3344ca0633f105174384bc3803f
BLAKE2b-256 7249e499fa07a170d14b2eedc27ab9e9461ff89c07eaef1e20d39aba2eec6a34

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 04a2ead07c5adb0d19eba4229a4cc672c04dbf70a91042d569692ebd036d2d05
MD5 facced45f1d6a0465e4f84295d2401cd
BLAKE2b-256 96652e3127e56870f000332ef2cc1df7bd8dea56f6aa92cfc172986a010d3ea2

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5f00e6c721364b18f3700f08dc697273183f91ca47608f4f80953afdfbb3a7c6
MD5 f999ec80c98de4893ca96c380c10a88b
BLAKE2b-256 b933bce10b91adb2c6766ed5d946c61e3eb5646e975db52d788a7f7a5abb9aca

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 8f9083d4dbb754f06136763033e831090b5d85b020834fa2c3d3e285f3c8b8a1
MD5 74eac3ca5a0b213f80a063b1c80acd46
BLAKE2b-256 0cf5b3c0e5f9eb262cb34408bf9222283091f297233af5190e786141b45825b0

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 0575371a1c7d85e394d5679ede81e0551f31196fa12fc6b8f41cffc3fbe3120b
MD5 eeb4291145799b825185e966548f62c8
BLAKE2b-256 a1b44a70c7bd7ac5a6c46621ca906214c8d86d96a250a5ddce4d9268314dd0fe

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp35-cp35m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp35-cp35m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 d5611e3bff270876eb0ff0e91e6a638c13f4bad05a8eef3c6a3214b149596556
MD5 662291db69ba780df7dfce871bd26d1c
BLAKE2b-256 bf7391b214f68cd92207ab6d33c66acd787399c07a2452939e42891957d244ff

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 074d161b866760cdfa1f2ede8914555b297d383987d1921b3809977f446c68fe
MD5 854a3c15b54aa87c0438bff20aae83ed
BLAKE2b-256 de86a91aa56ba155a81b2e4bf8691eed34988f46897edaad74746106466a1d10

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 fc0dd6f10e172365abcb4c123d3a35b0529e770fa3aea09eced7fda086c90798
MD5 59433470365246fdef2d55ed9b3ee806
BLAKE2b-256 2458f830e3a100675734b37a4bb58d90e1611ec81c5268bd4a07e7965eb137a3

See more details on using hashes here.

File details

Details for the file landlab-1.4.0-cp27-cp27m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for landlab-1.4.0-cp27-cp27m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 c1d9315178817d7360015e968c3ba7a9df4ff9fc0b4bb99e707205b726346d7c
MD5 fa72f2d8dab2e714029f5ee4e21aeca1
BLAKE2b-256 c3740c46f1db039376b6dbbf93c363f2ae7dde251d1b14a9e87e12c2cd5cf96a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page