Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.0.4.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.0.4-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.0.4.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.0.4.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for langchain_mistralai-0.0.4.tar.gz
Algorithm Hash digest
SHA256 5c17671e30a6cee0059a0e0c725e2a137941877b058ce57569f73f5cf37b72ad
MD5 f5e566a2dc7088586846c15099216bbc
BLAKE2b-256 e64856b8b9abc61c7f3e7e025048218fcedb9bd74fefc6ec549460b7ee0c691a

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 595f78338778cc9846a3d338e24fb0a21092150c3aa0684d007129a13b938a0e
MD5 43ec78d30372d8d5bd039b1ddb88f773
BLAKE2b-256 d89935b69e1697d7ad797bfc3083e7863d03b37072b97b9de0102613321529fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page