Skip to main content

Linguistic diagnostics for word embeddings

Project description

====================================
Linguistic Diagnostics Toolkit (LDT)
====================================

.. image:: https://travis-ci.com/annargrs/ldt.svg?branch=master
:target: https://travis-ci.com/annargrs/ldt
:alt: Build Status

.. inclusion-marker-begin-do-not-remove

LDT is a shiny new Python library for doing two things:

* querying lots of dictionaries from a unified interface to perform **spelling normalization, lemmatization, morphological analysis, retrieving semantic relations from WordNet, Wiktionary, BabelNet**, and a lot more.

* using the above to **explore and profile word embeddings**, i.e. the cool distributional representations of words as vectors.

If you have never heard about word embeddings -- you're missing out, here's `an introduction <https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/>`_. If you have, head over to the `project website <ldtoolkit.space>`_ for some new research results. And if you don't care about word embeddings, you can still just use LDT as a supplement to NLTK, SpaCy, and other great NLP tools.

**Note:** LDT is in active development; all the dictionary functionality for English and scripts for running experiments are already available. Integration with `vecto library <vecto.space>`_ and optimization are coming in the nearest weeks; please update your installation often. You can also join the `discussion <https://groups.google.com/forum/#!forum/linguistic-diagnostics>`_ group to discuss your results and get notified about new releases!

---------------------------------
LDT for profiling word embeddings
---------------------------------

`Install and configure <https://ldt.readthedocs.io/Tutorial/installation.html>`_
ldt, and run this sample script (and/or change it to tweak the `resources <https://ldt.readthedocs.io/Tutorial/dicts/index.html>`_
used for relation detection):

::

python3 -m ldt.experiments.default_workflow

The output will be something like this:

+-------------------+--------+--------+--------+
| LD score | CBOW | GloVe | SG |
+-------------------+--------+--------+--------+
| SharedMorphForm | 51.819 | 52.061 | 52.9 |
+-------------------+--------+--------+--------+
| SharedPOS | 30.061 | 35.507 | 31.706 |
+-------------------+--------+--------+--------+
| SharedDerivation | 4.468 | 3.938 | 5.084 |
+-------------------+--------+--------+--------+
| Synonyms | 0.413 | 0.443 | 0.447 |
+-------------------+--------+--------+--------+
| Antonyms | 0.128 | 0.133 | 0.144 |
+-------------------+--------+--------+--------+
| Hyponyms | 0.035 | 0.035 | 0.038 |
+-------------------+--------+--------+--------+
| OtherRelations | 0.013 | 0.013 | 0.013 |
+-------------------+--------+--------+--------+
| Misspellings | 13.546 | 9.914 | 12.809 |
+-------------------+--------+--------+--------+
| ProperNouns | 30.442 | 27.278 | 27.864 |
+-------------------+--------+--------+--------+
| CloseNeighbors | 3.102 | 0.16 | 2.278 |
+-------------------+--------+--------+--------+
| FarNeighbors | 25.209 | 49.934 | 21.41 |
+-------------------+--------+--------+--------+

The numbers here indicate percentage of neighbor vectors that held the
indicated relation with each target word in the sample. The information is
coming from a ton of dictionaries (see below), and you can fine-tune which
ones you want to use.

LDT profile explains what kinds of information your embedding model
actually captures. That can help you predict how your model will do on
a particular task, and also give some ideas about how it can be improved.
Check out the `results of a large-scale experiment with 60 embeddings and 21
datasets. <http://ldtoolkit.space/analysis/correlation/>`_

And yes, you heard it right, you can use your own vocabulary sample - the one
that actually makes sense for whatever downstream task you're optimizing for!

Note:

The current implementation queries online resources, so a large
experiment will take time. Stay tuned, we're working on making it faster.
The distribution analysis is currently provided only for embeddings
trained on our `pre-processed Wikipedia dump <http://ldtoolkit.space/task_data/>`_,
which is also available in dependency-parsed version.
Functionality for computing distriburional information from any other
corpora is coming.

-----------------------------------------
LDT for detecting relations in word pairs
-----------------------------------------

The main function of LDT is automatic detection of linguistic relations
that *could* possibly hold in a pair of words. This super-complicated
procedure can now be performed in one click:

>>> relation_analyzer = ldt.relations.RelationsInPair()
>>> relation_analyzer.analyze("black", "white")
{'Hyponyms': True,
'SharedMorphForm': True,
'SharedPOS': True,
'Synonyms': True,
'Antonyms': True,
'ShortestPath': 0.058823529411764705,
'Associations': True}

It goes without saying that *white* and *black* are not always antonyms.
Context dependence is something we're thinking about, stay tuned for future
work.

---------------------------------
LDT for working with dictionaries
---------------------------------

The above information comes from a ton of various dictionary resources. You
can access all combined information about any given word in one click:

>>> encapsulation = ldt.Word("encapsulation")
>>> encapsulation.pp_info()
======DERIVATIONAL INFO======
Stems : capsulate, encapsulate, capsule
Suffixes : -ion, -ate
Prefixes : en-
OtherDerivation :
RelatedWords : encapsulation, capsule review, glissonian capsule, capsular, capsulate
======SEMANTIC INFO======
Synonyms : encapsulation
Antonyms :
Meronyms :
Hyponyms :
Hypernyms : physical_process, status, condition, process
======EXTRA WORD CLASSES======
ProperNouns : False
Noise : False
Numbers : False
URLs : False
Hashtags : False
Filenames : False
ForeignWords : False
Misspellings : False
Missing : False

To provide this, LDT queries various old and new resources. Accordingly,
they are all now accessible from a unified Python interface,
making LDT usable in other NLP research areas as a companions to NLTK.

A few quick highlights of ldt resources:

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Retrieving related words from WordNet, Wiktionary, Wiktionary Thesaurus and BabelNet:
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

>>> wiktionary = ldt.dicts.semantics.Wiktionary()
>>> wiktionary.get_relation("white", relation="synonyms")
['pale', 'fair']
>>> wikisaurus = ldt.dicts.semantics.Wikisaurus()
>>> wikisaurus.get_relations("cat", relations="all")
{'synonyms': ['tabby', 'puss', 'cat', 'kitty', 'moggy', 'housecat', 'malkin', 'kitten', 'tom', 'grimalkin', 'pussy-cat', 'mouser', 'pussy', 'queen', 'tomcat', 'mog'],
'hyponyms': [],
'hypernyms': ['mammal', 'carnivore', 'vertebrate', 'feline', 'animal', 'creature'],
'antonyms': [],
'meronyms': []}
>>> babelnet = ldt.dicts.semantics.BabelNet()
>>> babelnet.get_relations("senator", relations=("hypernyms"))
{'hypernyms': ['legislative_assembly', 'metropolitan_see_of_milan', 'poltician', 'legislative_seat', 'senator_of_rome', 'band', 'the_upper_house', 'polictian', 'patres_conscripti', 'musical_ensemble', 'presbytery', 'politician', 'pol', 'solo_project', 'policymaker', 'political_figure', 'politican', 'policymakers', 'archbishop_emeritus_of_milan', 'deliberative_assemblies', 'ensemble', 'career_politics', 'soloproject', 'list_of_musical_ensembles', 'legislative', 'roman_senators', 'archbishopric_of_milan', 'politicain', 'rock_bands', 'section_leader', 'musical_organisation', 'music_band', 'four-piece', 'roman_catholic_archdiocese_of_milan', 'upper_house', 'archdiocese_of_milan', 'band_man', 'milanese_apostolic_catholic_church', 'legistrative_branch', 'group', 'solo-project', 'music_ensemble', 'law-makers', 'roman_senator', 'legislative_arm_of_government', 'solo_act', 'patronage', 'roman_catholic_archbishop_of_milan', 'bar_band', 'senate_of_rome', 'deliberative_body', 'see_of_milan', 'legislative_fiat', 'musical_group', 'ambrosian_catholic_church', 'legislature_of_orissa', 'legislative_branch_of_government', 'list_of_politicians', 'senatorial_lieutenant', 'roman_catholic_archdiocese_of_milano', 'legislature_of_odisha', 'bandmember', 'assembly', 'archdiocese_of_milano', 'bishop_of_milan', 'ensemble_music', 'solo_musician', 'musical_duo', 'legislative_branch_of_goverment', 'first_chamber', 'politicians', 'legislative_bodies', 'political_leaders', 'politico', 'music_group', 'legislative_body', 'career_politician', 'legislature', 'rock_group', 'legislative_power', 'diocese_of_milan', 'musical_ensembles', 'musical_organization', 'revising_chamber', 'archbishops_of_milan', 'political_leader', 'deliberative_assembly', 'conscript_fathers', 'five-piece', 'catholic_archdiocese_of_milan', 'pop_rock_band', 'senatrix', 'deliberative_organ', 'polit.', 'roman_senate', 'legislative_politics', 'bishopric_of_milan', 'legislative_branch', 'musical_band', 'archbishop_of_milan', 'legislatures', 'general_assembly', 'musical_groups', 'instrumental_ensemble', 'politition', 'patres', 'upper_chamber', 'solo-act', 'conscripti', 'legislator']}

++++++++++++++++++++++
Derivational analysis:
++++++++++++++++++++++

>>> derivation_dict = ldt.dicts.derivation.DerivationAnalyzer()
>>> derivation_dict.analyze("kindness")
{'original_word': ['kindness'],
'other': [],
'prefixes': [],
'related_words': ['kindhearted', 'kindly', 'in kind', 'kindliness', 'kinda', 'many-kinded', 'first-of-its-kind', 'kind of', 'kindful', 'kindless'],
'roots': ['kind'],
'suffixes': ['-ness']}

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Reliable lemmatization with productive rules and Wiktionary/BabelNet:
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

WordNet lemmatizer is limited by the size of its lexical base, even when
the morphological pattern is straightforward.

>>> morph_metadict = ldt.dicts.morphology.MorphMetaDict()
>>> morph_metadict.lemmatize("GPUs")
['GPU']

+++++++++++++++++++
Input normalization
+++++++++++++++++++

Vector neighborhoods are often full of pre-processing noise and misspellings. LDT does its best to clean up some straightforward cases:

>>> analyzer = ldt.dicts.normalize.Normalization()
>>> analyzer.normalize("%grammar")
{'lemmas': ['grammar'],
'found_in': ['wordnet'],
'word_categories': ['Misspellings'],
'pos': ['noun']}
>>> analyzer.normalize("gram-mar")
{'found_in': ['wordnet'],
'lemmas': ['grammar'],
'word_categories': ['Misspellings'],
'pos': ['noun']}
>>> analyzer.normalize("grammarlexicon")
{'found_in': ['wordnet'],
'lemmas': ['grammar', "lexicon],
'word_categories': ['Misspellings'],
'pos': ['noun']}

LDT also provides the option of correction of frequent misspelling patterns
(only for high-certainty cases):

>>> spellchecker_en = ldt.dicts.spellcheck.SpellcheckerEn()
>>> spellchecker_en.spelling_nazi("abritrary")
'arbitrary'

.. inclusion-marker-end-do-not-remove

-----------
Quick links
-----------

* `Installation instructions <https://ldt.readthedocs.io/Tutorial/installation.html>`_
* `Project website <http://ldtoolkit.space>`_
* `Tutorial <https://ldt.readthedocs.io/Tutorial/index.html>`_
* `API reference <https://ldt.readthedocs.io/genindex.html>`_.
* `Published research results <http://aclweb.org/anthology/C18-1228>`_.
* `Word embeddings leaderboard <http://ldtoolkit.space/leaderboard/>`_.
* `Correlation of LD scores with downstream task performance <http://ldtoolkit.space/analysis/correlation/>`_.

-------
Support
-------

If something doesn't work, open an issue on GitHub.

---------------
Multilinguality
---------------

Yes, LDT is multilingual! At least, as far as querying semantic relations
goes. LDT supports BabelNet, the largest multilingual dictionary resource available -
so everything they have is retrievable. Many of the other LDT modules (particularly morphology)
are language-specific, and only English is fully supported at
the moment. However, the infrastructure for adding other languages is already
in place, so if you can find or create e.g. lists of affixes for your
language, development would be easy. Get in touch if you'd like to get
involved.

Legal caveat: LDT is open-source free software. No hamsters were harmed in its production,
and no harm should come from its usage. However, no guarantees of any kind.


v. 0.4.0, 2018-11-14

* bug fixes

v.0.3.9, 2018-11-04

* multicore processing in annotation module
* query timeout setting
* optimized loading of cooccurrence data in ldt resources
* corpus statistics now optional
* minor fixes

v. 0.3.0, 2018-10-08

* experiments package:
- extracting vector neighborhoods with optional normalization
- annotating vector neighborhoods with linguistic relations
- analysing the results
- automatically logging metadata for all experiments
* bug fixes

v 0.2.1, 2018-09-25.

* bug fixes.

v 0.2.0, 2018-09-24.

* Tutorial;
* 19 LD variables, including ontology paths;
* detection of antonymy with language-specific derivational patterns;
* bug fixes.

v 0.1.0, 2018-08-15 -- Initial release.

* Retrieving lexicographic information from BabelNet, Wiktionary, Wikisaurus and English WordNet;
* Retrieving morphological information from the same resources;
* Lemmatization with WordNet and custom rules for English;
* Custom rule-based analysis of productive suffixes and prefixes for English;
* Parsing Wiktionary etymologies
* Custom compound splitting routines with filtering by subword length;
* 4 custom patterns for fixing frequent spelling mistakes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ldt-0.4.0.tar.gz (4.6 MB view details)

Uploaded Source

Built Distribution

ldt-0.4.0-py3-none-any.whl (4.7 MB view details)

Uploaded Python 3

File details

Details for the file ldt-0.4.0.tar.gz.

File metadata

  • Download URL: ldt-0.4.0.tar.gz
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for ldt-0.4.0.tar.gz
Algorithm Hash digest
SHA256 a2a0dc60bda3f7d937ff4e48ff8e4e3cac9e3af749130f079ada78c40f6d3f40
MD5 8cedf3a5bb33b0f349e24e3136aa90ea
BLAKE2b-256 08b9afdba60baeb9d7bc226b00676ff27f4c757979cc78b696ed6b594ca5e63e

See more details on using hashes here.

File details

Details for the file ldt-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: ldt-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for ldt-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1a06abb9e27048e11bc3da3382cc7dff475bab59a79abc203b1f37a7b2719157
MD5 fd04d1daef84317fdb3609f4084cef55
BLAKE2b-256 10efaa2e62719cc2baed67d48f44f83ef317705079b7cfec805795bfcdf9a9f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page