Word alignment between two languages using structured generation
Project description
lexi-align
Word alignment of multilingual sentences using structured generation with Large Language Models.
Installation
Install from PyPI:
pip install lexi-align
(or your favorite method)
The library is API-backend agnostic and only directly depends on Pydantic, so you will need to bring your own API code or use the provided litellm integration.
For LLM support via litellm (recommended), install with the optional dependency:
pip install lexi-align[litellm]
Using uv:
uv add lexi-align --extra litellm
For LLM support via Outlines (for local models), install with:
pip install lexi-align[outlines]
Using uv:
uv add lexi-align --extra outlines
For LLM support via llama.cpp (for local models), install with:
pip install lexi-align[llama]
Using uv:
uv add lexi-align --extra llama
Usage
Basic Usage
The library expects pre-tokenized input--it does not perform any tokenization. You must provide tokens as lists of strings:
from lexi_align.adapters.litellm_adapter import LiteLLMAdapter
from lexi_align.core import align_tokens
# Initialize the LLM adapter
llm_adapter = LiteLLMAdapter(model_params={
"model": "gpt-4",
"temperature": 0.0
})
# Provide pre-tokenized input with repeated tokens
source_tokens = ["the", "big", "cat", "saw", "the", "cat"] # Note: "the" and "cat" appear twice
target_tokens = ["le", "gros", "chat", "a", "vu", "le", "chat"]
alignment = align_tokens(
llm_adapter,
source_tokens,
target_tokens,
source_language="English",
target_language="French"
)
# Example output will show the uniquified tokens:
# the₁ -> le₁
# big -> gros
# cat₁ -> chat₁
# saw -> a
# saw -> vu
# the₂ -> le₂
# cat₂ -> chat₂
Using Custom Guidelines and Examples
You can provide custom alignment guidelines and examples to improve alignment quality:
from lexi_align.adapters.litellm_adapter import LiteLLMAdapter
from lexi_align.core import align_tokens
from lexi_align.models import TextAlignment, TokenAlignment
# Initialize adapter as before
llm_adapter = LiteLLMAdapter(model_params={
"model": "gpt-4",
"temperature": 0.0
})
# Define custom guidelines
guidelines = """
1. Align content words (nouns, verbs, adjectives) first
2. Function words should be aligned when they have clear correspondences
3. Handle idiomatic expressions by aligning all components
4. One source token can align to multiple target tokens and vice versa
"""
# Provide examples to demonstrate desired alignments
examples = [
(
"The cat".split(), # source tokens
"Le chat".split(), # target tokens
TextAlignment( # gold alignment
alignment=[
TokenAlignment(source_token="The", target_token="Le"),
TokenAlignment(source_token="cat", target_token="chat"),
]
)
),
# Add more examples as needed
]
# Use guidelines and examples in alignment
alignment = align_tokens(
llm_adapter,
source_tokens,
target_tokens,
source_language="English",
target_language="French",
guidelines=guidelines,
examples=examples
)
Raw Message Control
For more control over the prompt, you can use align_tokens_raw
to provide custom messages:
from lexi_align.core import align_tokens_raw
custom_messages = [
{"role": "system", "content": "You are an expert translator aligning English to French."},
{"role": "user", "content": "Follow these guidelines:\n" + guidelines},
# Add any other custom messages
]
alignment = align_tokens_raw(
llm_adapter,
source_tokens,
target_tokens,
custom_messages
)
Token Uniquification
The library automatically handles repeated tokens by adding unique markers:
from lexi_align.utils import make_unique, remove_unique
# Tokens with repeats
tokens = ["the", "cat", "the", "mat"]
# Add unique markers
unique_tokens = make_unique(tokens)
print(unique_tokens) # ['the₁', 'cat', 'the₂', 'mat']
# Remove markers
original_tokens = remove_unique(unique_tokens)
print(original_tokens) # ['the', 'cat', 'the', 'mat']
You can also customize the marker style:
from lexi_align.text_processing import create_underscore_generator
# Use underscore markers instead of subscripts
marker_gen = create_underscore_generator()
unique_tokens = make_unique(tokens, marker_gen)
print(unique_tokens) # ['the_1', 'cat', 'the_2', 'mat']
Using Local Models with Outlines
For running local models, you can use the Outlines adapter:
from lexi_align.adapters.outlines_adapter import OutlinesAdapter
from lexi_align.core import align_tokens
# Initialize the Outlines adapter with a local model
llm_adapter = OutlinesAdapter(
model_name="Qwen/Qwen2.5-1.5B-Instruct", # or any local model path
dtype="bfloat16", # optional: choose quantization
device="cuda" # optional: specify device
)
# Use the same API as with other adapters
alignment = align_tokens(
llm_adapter,
source_tokens,
target_tokens,
source_language="English",
target_language="French"
)
Using Local Models with llama.cpp
For running local models with llama.cpp:
from lexi_align.adapters.llama_cpp_adapter import LlamaCppAdapter
from lexi_align.core import align_tokens
# Initialize the llama.cpp adapter with a local model
llm_adapter = LlamaCppAdapter(
model_path="path/to/model.gguf",
n_gpu_layers=-1, # Use GPU acceleration
)
# Note that for some GGUF models the pre-tokenizer might fail,
# in which case you can specify the tokenizer_repo_id, which
# should point to the base model's repo_id on Huggingface.
# Use the same API as with other adapters
alignment = align_tokens(
llm_adapter,
source_tokens,
target_tokens,
source_language="English",
target_language="French"
)
Performance
Here are some preliminary results on the test EN-SL subset of XL-WA:
gpt-4o-2024-08-06 (1shot) (seed=42)
Language Pair | Precision | Recall | F1 |
---|---|---|---|
EN-SL | 0.863 | 0.829 | 0.846 |
Average | 0.863 | 0.829 | 0.846 |
claude-3-haiku-20240307 (1shot)
Language Pair | Precision | Recall | F1 |
---|---|---|---|
EN-SL | 0.651 | 0.630 | 0.640 |
Average | 0.651 | 0.630 | 0.640 |
meta-llama/Llama-3.2-3B-Instruct (1shot)
Language Pair | Precision | Recall | F1 |
---|---|---|---|
EN-SL | 0.606 | 0.581 | 0.593 |
Average | 0.606 | 0.581 | 0.593 |
For reference, the 1-shot (1 example) gpt-4o-2024-08-06
results for EN-SL outperform all systems presented in the paper (Table 2).
Smaller LLMs perform below SOTA.
Pharaoh Format Export
While the core alignment functions work with pre-tokenized input, the Pharaoh format utilities currently assume space-separated tokens when parsing/exporting. If your tokens contain spaces or require special tokenization, you'll need to handle this separately.
from lexi_align.utils import export_pharaoh_format
# Note: Pharaoh format assumes space-separated tokens
pharaoh_format = export_pharaoh_format(
source_tokens, # Pre-tokenized list of strings
target_tokens, # Pre-tokenized list of strings
alignment
)
print(pharaoh_format)
# Output (will differ depending on chosen model):
# The cat sat on the mat Le chat était assis sur le tapis 0-0 1-1 2-2 2-3 3-4 4-5 5-6
The Pharaoh format consists of three tab-separated fields:
- Source sentence (space-separated tokens)
- Target sentence (space-separated tokens)
- Alignments as space-separated pairs of indices (source-target)
Running Evaluations
The package includes scripts to evaluate alignment performance on the XL-WA dataset (CC BY-NC-SA 4.0):
# Install dependencies
pip install lexi-align[litellm]
# Basic evaluation on a single language pair
python evaluations/xl-wa.py --lang-pairs EN-SL
# Evaluate on all language pairs
python evaluations/xl-wa.py --lang-pairs all
# Full evaluation with custom parameters
python evaluations/xl-wa.py \
--lang-pairs EN-FR EN-DE \
--model gpt-4 \
--temperature 0.0 \
--seed 42 \
--num-train-examples 3 \
--output results.json
Available command-line arguments:
--lang-pairs
: Language pairs to evaluate (e.g., EN-SL EN-DE) or "all"--model
: LLM model to use (default: gpt-4)--temperature
: Temperature for LLM sampling (default: 0.0)--seed
: Random seed for example selection (default: 42)--model-seed
: Seed for LLM sampling (optional)--num-train-examples
: Number of training examples for few-shot learning--sample-size
: Number of test examples to evaluate per language pair--output
: Path to save results JSON file--verbose
: Enable verbose logging
Planned improvements
- structured generation support (adapter additions) for local models via Outlines and llama.cpp GBNF
- retries on errors or invalid alignments
License
This project is licensed under the MIT License - see the LICENSE file for details.
Citation
If you use this software in your research, please cite:
@software{lexi_align,
title = {lexi-align: Word Alignment via Structured Generation},
author = {Hodošček, Bor},
year = {2024},
url = {https://github.com/borh-lab/lexi-align}
}
References
We use the XL-WA dataset (repository) to perform evaluations:
@InProceedings{martelli-EtAl:2023:clicit,
author = {Martelli, Federico and Bejgu, Andrei Stefan and Campagnano, Cesare and Čibej, Jaka and Costa, Rute and Gantar, Apolonija and Kallas, Jelena and Koeva, Svetla and Koppel, Kristina and Krek, Simon and Langemets, Margit and Lipp, Veronika and Nimb, Sanni and Olsen, Sussi and Pedersen, Bolette Sandford and Quochi, Valeria and Salgado, Ana and Simon, László and Tiberius, Carole and Ureña-Ruiz, Rafael-J and Navigli, Roberto},
title = {XL-WA: a Gold Evaluation Benchmark for Word Alignment in 14 Language Pairs},
booktitle = {Procedings of the Ninth Italian Conference on Computational Linguistics (CLiC-it 2023)},
month = {November},
year = {2023}
}
This code was spun out of the hachidaishu-translation project, presented at JADH2024.
Development
Contributions are welcome! Please feel free to submit a Pull Request.
To set up the development environment:
git clone https://github.com/borh-lab/lexi-align.git
cd lexi-align
pip install -e ".[dev]"
Run tests:
pytest
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lexi_align-0.2.0.tar.gz
.
File metadata
- Download URL: lexi_align-0.2.0.tar.gz
- Upload date:
- Size: 172.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b41c0c5f7707974996f8c2fa36275cca3a5fa79ea4bf832ff1101fa33d5850e |
|
MD5 | 37bbfe635feee3225adcce61db5877b5 |
|
BLAKE2b-256 | cd5d422184d94365f3c53aa994586d4082c617f4212b1a440e6d505265e5bbfd |
Provenance
The following attestation bundles were made for lexi_align-0.2.0.tar.gz
:
Publisher:
publish.yaml
on borh-lab/lexi-align
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
lexi_align-0.2.0.tar.gz
- Subject digest:
4b41c0c5f7707974996f8c2fa36275cca3a5fa79ea4bf832ff1101fa33d5850e
- Sigstore transparency entry: 147206070
- Sigstore integration time:
- Predicate type:
File details
Details for the file lexi_align-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: lexi_align-0.2.0-py3-none-any.whl
- Upload date:
- Size: 20.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80ac151900f932e360a907a20d4c5e8b6e5ca41cdb1b33c7363522b14a476abb |
|
MD5 | 0561083c17dd92a6f327f67ee61882b8 |
|
BLAKE2b-256 | 22bb4834aa65376206a67f090c6b24db13e77a41db40a515646ff2dafe15c93e |
Provenance
The following attestation bundles were made for lexi_align-0.2.0-py3-none-any.whl
:
Publisher:
publish.yaml
on borh-lab/lexi-align
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
lexi_align-0.2.0-py3-none-any.whl
- Subject digest:
80ac151900f932e360a907a20d4c5e8b6e5ca41cdb1b33c7363522b14a476abb
- Sigstore transparency entry: 147206072
- Sigstore integration time:
- Predicate type: