Skip to main content

From Airflow deployed in LinkedIn Infra production, full-fledged backfill feature with manageability and scalability, including UI and APIs.

Project description

Li-Airflow-Backfill-Plugin

GitHub Link of this page

This is an Airflow Plugin. It provides full-featured UI and APIs for data backfills in Airflow with manageability and scalability.

Features

We want users to be able run backfills in a scheduled, managed, scalable, and robust way:

  • Backfills can be triggered directly with desired options
  • Backfills can be monitored and manageable
  • Backfills are scalable
  • Resilient to Airflow system restarts and failures
  • Allow scheduled Dags to run while backfilling
  • Proper controlling of resources used by backfills

These features can be easily added to an Airflow instances since it is an Airflow plugin.

Quick Start

Let's get started by running Airflow and backfill at local docker: (docker is required, refer to Airflow doc for more details in running Airflow in docker):

# in project root folder
# start
docker-compose up
# stop
docker-compose down

To access Airflow web: http://localhost:8080 (user/pass airflow:airflow)

Backfill User Doc

Supported Airflow Version

The supported Airflow version is 2.5.3.

Other versions are exected to work. To quickly test other versions:

volumes:
    - ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
    - ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
    - ${AIRFLOW_PROJ_DIR:-.}/plugins/linkedin/airflow/backfill:/opt/airflow/plugins/linkedin/airflow/backfill

Deploy Backfill Plugin to an Existing Airflow Instance

Deploy Plugin

Option 1: Drop files to Airflow plugins folder

As Apache Airflow doc says, simply drop all the content in the plugins folder in the project root to the $AIRFLOW_HOME/plugins folder of the Airflow instance.

Restart of the Airflow may be needed according the Airflow config to enable the backfill plugin.

Option 2: Install from PyPi

Starting from 1.0.2, Backfill plugin is available in PyPi. After installation, backfill lib will be installed and registered through entry_points in setup.py.

pip install li-airflow-backfill-plugin==1.0.2

Deploy System Dags

Some Dags are needed to make backfill work. After enabling backfill plugin, drop all the content in the dags/backfill_dags folder to the configured Airflow Dags folder (default is $AIRFLOW_HOME/dags) of the Airflow instance.

Restart of the Airflow is not needed.

Plugin Development

Run Airflow

After making changes to the source code, you can run the Airflow in local docker as described in Quick Start to test. The logs will appear in the logs folder in the project root, and feel free to add testing Dags to the dags folder.

Unit Test

pytest is used to run unit tests in docker. The test source code is in tests folder and the pytest configure is pytest.ini

Build Image once for all:

# in project root folder
docker build -t airflow-backfill-plugin-tests-1 -f tests.Dockerfile .

Run Unit Test:

# in project root folder
./run_tests.sh

Advanced Topics

For detailed design, please refer to the Design Doc.

Assumptions

Writing files to Airflow Dags folder

By default, backfill Dag files will be created in dags/backfill_user_dags folder in workers. This limitation may be lifted through backfill store customerization.

Shallow copy

The backfill Dags are shallow copies from the origin Dags, which means if dependencies outside of the Dag definition file change while backfills are running, the actual behavior may change accordingly.

Database

A backfill table is automactically created and leveraged to store backfill meta and status information in the default Airflow database.

No other tables are created or modified by the backfill feature.

Backfill Store Customerization

Backfill Dag Id Conventions

The Backfill Dag Ids are generated by backfill store. By default, the Id will be origin Dag Id affixed with "backfill" and timestamp.

The backfill Dag Id is customizable by setting AIRFLOW__LI_BACKFILL__BACKFILL_STORE env to new store class. For example:

name: AIRFLOW__LI_BACKFILL__BACKFILL_STORE
value: 'airflow.providers.my_porvider.backfill.backfill_store.MyBackfillStore'

Backfill Dags Persistence

The backfill Dag files by default are persisted to dags/backfill_user_dags folder.

The persistence is customizable, for example, to store Dags through APIs.

Security

Authetication

Backfill, both UI and APIs, is integrated into the existing Airflow authetication model, so they are autheticated as other Airflow UI and APIs. By default and in local docker Airflow instance, username and password are used to autheticate.

Access Control

Airflow RBAC is supported through permission module.

  • Backfill Menus Access: Backfill menu resources are defined and requires menu access permission to show the menu in the UI
  • Backfill Access: Backfill resource can be create (create backfill), read (list backfill), and operate (cancel or delete backfill)
  • Backfill Dag Access: Backfill Dags inherit Dag access permissions from the orgin Dags
  • Origin Dags to backfill: Must have can_edit permission for the origin Dag to start backfill

By default, all the backfill permissions are automatically granted to "User" and "Op" roles. This can be customerized through AIRFLOW__LI_BACKFILL__PERMITTED_ROLES. For example:

name: AIRFLOW__LI_BACKFILL__PERMITTED_ROLES
value: 'first_role,second_role'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

li-airflow-backfill-plugin-1.0.3.tar.gz (23.9 kB view details)

Uploaded Source

File details

Details for the file li-airflow-backfill-plugin-1.0.3.tar.gz.

File metadata

  • Download URL: li-airflow-backfill-plugin-1.0.3.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.9.6 requests/2.31.0 setuptools/58.0.4 requests-toolbelt/1.0.0 tqdm/4.66.1 CPython/3.9.6

File hashes

Hashes for li-airflow-backfill-plugin-1.0.3.tar.gz
Algorithm Hash digest
SHA256 099e3c1178dea1522423939e45efb17ff32ee5876d80b21e530140d414412e32
MD5 27b35e71cbb33ace04a057d60b9af0ae
BLAKE2b-256 9c5deee3ae0e793124d561f49e82d190a382a042645e29891646e5c9c5695f5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page