Multi-Launguage RoBERTa trained by RIKEN-AIP LIAT.
Project description
liat_ml_roberta
Multi-Language RoBERTa trained by RIKEN-AIP LIAT.
How to install
Can use pip to install.
pip install liat_ml_roberta
How to use
The loaded models and configurations can be used in the same way as transformers.roberta.
from liat_ml_roberta import RoBERTaTokenizer
def main():
tokenizer = RoBERTaTokenizer.from_pretrained(version="en_20190121_m10000_v24000_base")
print(tokenizer.tokenize("This is a pen."))
config = RoBERTaConfig.from_pretrained("roberta_base_en_20190121_m10000_v24000_u125000")
model = RoBERTaModel.from_pretrained("roberta_base_en_20190121_m10000_v24000_u125000", config=config)
if __name__ == "__main__":
main()
Models
name | lang | size | bpe merges | vocab size | updates | wikipedia version |
---|---|---|---|---|---|---|
roberta_base_ja_20190121_m10000_v24000_u125000 | ja | roberta-base | 10000 | 24000 | 125000 | 20190121 |
roberta_base_en_20190121_m10000_v24000_u125000 | en | roberta-base | 10000 | 24000 | 125000 | 20190121 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
liat_ml_roberta-1.1.0.tar.gz
(734.8 kB
view details)
Built Distribution
File details
Details for the file liat_ml_roberta-1.1.0.tar.gz
.
File metadata
- Download URL: liat_ml_roberta-1.1.0.tar.gz
- Upload date:
- Size: 734.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3ccacfab0ea812a75fed6c10a300538224a407c1d5acccffa937091aaac6de77 |
|
MD5 | a7456a1d11155305e6e799fd2bc5baf2 |
|
BLAKE2b-256 | 3ce205ef01d7d9ada5f67dd955a54b69c1da7b280b27deafa3422eccd78aaf23 |
File details
Details for the file liat_ml_roberta-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: liat_ml_roberta-1.1.0-py3-none-any.whl
- Upload date:
- Size: 1.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16bd82596ebd4cff41a361623c6b1ac379bb0d139d93f78d9737b9fe14b1fe28 |
|
MD5 | 0a398cfaeecd6d0c2ff8c4049775001a |
|
BLAKE2b-256 | 7477416ea130baf3d8edbd3a5570ed8fc32e8afaf4b7f3bf85cdb2af72d2f00d |