Skip to main content

Split Linearized Bregman Iteration

Project description

Citing libra_py
=============

The library libra_py is an academic project. The time and resources spent developing fastFM are therefore justified
by the number of citations of the software. If you publish scientific articles using libra_py, please cite the following article (bibtex entry `citation.bib <http://jmlr.org/papers/v17/15-355.bib>`_).

Bayer, I. "fastFM: A Library for Factorization Machines" Journal of Machine Learning Research 17, pp. 1-5 (2016)


libra_py: A Package for sparsity problem
============================================



Supported Operating Systems
---------------------------
fastFM has a continuous integration / testing servers (Travis) for **Linux (Ubuntu 14.04 LTS)**
and **OS X Mavericks**. Other OS are not actively supported.

Usage
-----
.. code-block:: python

from fastFM import als
fm = als.FMRegression(n_iter=1000, init_stdev=0.1, rank=2, l2_reg_w=0.1, l2_reg_V=0.5)
fm.fit(X_train, y_train)
y_pred = fm.predict(X_test)


Tutorials and other information are available `here <http://arxiv.org/abs/1505.00641>`_.
The C code is available as `subrepository <https://github.com/ibayer/fastFM-core>`_ and provides
a stand alone command line interface. If you have still **questions** after reading the documentation please open a issue at GitHub.

+----------------+------------------+-----------------------------+
| Family | Solver | Loss |
+================+==================+=============================+
| Gaussian | LBI_Linear | Square Loss |
+----------------+------------------+-----------------------------+
| Binomial | LBI_Logit | Logit Model |
+----------------+------------------+-----------------------------+

*Supported solvers and tasks*

Installation
------------

**binary install**

``pip install libra_py``


Tests
-----

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

libra_py-0.0.1.tar.gz (11.1 kB view details)

Uploaded Source

File details

Details for the file libra_py-0.0.1.tar.gz.

File metadata

  • Download URL: libra_py-0.0.1.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for libra_py-0.0.1.tar.gz
Algorithm Hash digest
SHA256 1408d9ee91c57f9a4c8d27f9d4048cd4edde62fefefab6e6ae20ed6896c4f589
MD5 a5242a48949814c617a37e30b262b7f9
BLAKE2b-256 792bd49ae39c2897fb5cbb94c6e4e55325f948fc3a260ae9cb3998af5600d791

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page