Skip to main content

Light Recurrent Unit

Project description

Light Recurrent Unit - Pytorch

Implementation of the Light Recurrent Unit in Pytorch

Install

$ pip install light-recurrent-unit-pytorch

Usage

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitCell

cell = LightRecurrentUnitCell(256)

x = torch.randn(2, 256)
hidden = torch.randn(2, 256)

next_hidden = cell(x, hidden) # (2, 256)

Single layer

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitLayer

layer = LightRecurrentUnitLayer(256)

x = torch.randn(2, 1024, 256)

out = layer(x) # (2, 1024, 256)

assert out.shape == x.shape

Stacked

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnit

lru = LightRecurrentUnit(256, depth = 4)

x = torch.randn(2, 1024, 256)

out, layer_hiddens = lru(x) # (2, 1024, 256), List[(2, 256)]

assert out.shape == x.shape

Citations

@Article{electronics13163204,
    AUTHOR = {Ye, Hong and Zhang, Yibing and Liu, Huizhou and Li, Xuannong and Chang, Jiaming and Zheng, Hui},
    TITLE = {Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency},
    JOURNAL = {Electronics},
    VOLUME = {13},
    YEAR = {2024},
    NUMBER = {16},
    ARTICLE-NUMBER = {3204},
    URL = {https://www.mdpi.com/2079-9292/13/16/3204},
    ISSN = {2079-9292},
    DOI = {10.3390/electronics13163204}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

light_recurrent_unit_pytorch-0.1.1.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file light_recurrent_unit_pytorch-0.1.1.tar.gz.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.1.1.tar.gz
Algorithm Hash digest
SHA256 eef7bfdc0dd622c69ef17d4efb35408add59aa7acb8f7a5feeaaf0117f03ba75
MD5 16a203cf9b74aface0068998a77dc81c
BLAKE2b-256 d72515c5465df72f181b608cd814850786f5b721c2596e07783a8e655cf5d878

See more details on using hashes here.

File details

Details for the file light_recurrent_unit_pytorch-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1a9dad164d13e285a4c55656e76e90efbde99c760862a8b0cc17cdc43074b305
MD5 9ddc1d1176ed742e6812014efa9fffeb
BLAKE2b-256 267f8a96cff787028f22509f91b390c844f31f9d313c476f892a23d7b8d9063a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page