A lightweight natural language understanding library
Project description
lightNLU
一个小巧简单的基于模板匹配的自然语言理解框架。
简介
一个基于Python实现的小巧简单的基于模板匹配的自然语言理解框架。 这里的自然语言理解仅指意图识别和词槽提取。
安装
pip install lightnlu
特性
- 特别轻量
- 模板文件使用yml格式
- 支持多源数据导入
- 模板语法简明易懂
使用示例
step1:定制词表规则
如编写words.yml
文件如下:
-
name: person
aliases:
- 人物
type: json
config:
path: data/person.json
-
name: place
aliases:
- 地点
- 位置
- 城市
- 区域
type: csv
config:
path: data/place.csv
-
name: relation
aliases: []
type: yml
config:
path: data/relation.yml
-
name: predicate
aliases: []
type: yml
config:
path: data/predicate.yml
其中对应的各yml、json、csv文件内容如下:
person.json
中内容如下:
{"name": "曹操", "id": "1"}
{"name": "刘备", "id": "2"}
{"name": "诸葛亮", "id": "3"}
{"name": "曹丕", "id": "4"}
{"name": "曹植", "id": "5"}
place.csv
中内容如下:
name,id
洛阳,1
长安,2
新野,3
赤壁,4
宛城,5
relation.yml
中内容如下:
son:
- 儿子
father:
- 父亲
- 爸爸
predicatel.yml
中内容如下:
is:
- 是
- 为
isnot:
- 不是
- 不为
step2:定制模板规则
如编写pattern.yml
文件如下:
-
name: father_son_relation
patterns:
-
- [person, ~, son] # 规则为 [类型, id值, 词槽名称]
- [relation, father, ~]
- [predicate, is, null]
- [person, ~, father]
-
- [ person, ~, father ]
- [ predicate, is, null ]
- [ person, ~, son ]
- [ relation, father, ~ ]
-
name: test
patterns:
-
- [person, ~, person]
- [ predicate, is, null ]
- ['@person', ~, ttt]
在以上的模板规则中,对于每一个模板规则,需要指定其名字(name)及相应的模板(patterns)。
由于存在多个相近但不相同的模板对应同一种意图及词槽,所以这里的patterns是一个列表。
在以上的pattern.yml文件中,包含一个'@person'
,这里可以映射到person这个类别所对应的所有别名,具体来说,可以对应到["人物"]
列表中的所有词汇。
step3:编写源代码及触发函数
示例如下:
# -*- coding: utf-8 -*-
import os
import sys
project_path = os.path.abspath(os.path.join(__file__, "../.."))
print(project_path)
sys.path.insert(0, project_path)
from lightnlu.core import NER, Rule
if __name__ == '__main__':
path = os.path.join(project_path, 'data/words.yml')
ner = NER()
ner.build_from_yml(path, base_dir=project_path)
print(ner.entities)
path = os.path.join(project_path, 'data/pattern.yml')
rule = Rule()
rule.build_from_yml(path)
@rule.bind(rule_name="father_son_relation", act_name="test", domain="relation")
def test(father: str, son: str):
return {
"father": father,
"son": son
}
@rule.bind(rule_name="test", act_name="ppp", domain="hello_world")
def ppp(person: str, ttt: str):
return {
"person": person,
"ttt": ttt
}
print(rule.actors)
text = "刘备和诸葛亮在新野旅游,途中遇上了曹操"
domain = "relation"
slots = ner.extract(text)
print(slots)
print(rule.match(slots, domain=domain))
text = "曹丕的父亲是曹操"
domain = "relation"
slots = ner.extract(text)
print(rule.match(slots, domain=domain))
print(rule.match_and_act(slots, domain=domain))
text = "曹操是曹丕的父亲"
domain = "relation"
slots = ner.extract(text)
print(rule.match(slots, domain=domain))
print(rule.match_and_act(slots, domain=domain))
text = "曹操是个人物"
domain = "hello_world"
slots = ner.extract(text)
print(rule.match(slots, domain=domain))
print(rule.match_and_act(slots, domain=domain))
执行结果如下:
defaultdict(<function default_type at 0x7f88a96b00d0>, {'曹操': [{'type': 'person', 'id': '1'}], '刘备': [{'type': 'person', 'id': '2'}], '诸葛亮': [{'type': 'person', 'id': '3'}], '曹丕': [{'type': 'person', 'id': '4'}], '曹植': [{'type': 'person', 'id': '5'}], '人物': [{'type': '@person', 'id': None}], '洛阳': [{'type': 'place', 'id': '1'}], '长安': [{'type': 'place', 'id': '2'}], '新野': [{'type': 'place', 'id': '3'}], '赤壁': [{'type': 'place', 'id': '4'}], '宛城': [{'type': 'place', 'id': '5'}], '地点': [{'type': '@place', 'id': None}], '位置': [{'type': '@place', 'id': None}], '城市': [{'type': '@place', 'id': None}], '区域': [{'type': '@place', 'id': None}], '电站': [{'type': 'ban_words', 'id': ''}], '正在站': [{'type': 'ban_words', 'id': ''}], '引流线': [{'type': 'ban_words', 'id': ''}], '子导线': [{'type': 'ban_words', 'id': ''}], '甲母线': [{'type': 'ban_words', 'id': ''}], '规则': [{'type': '@ban_words', 'id': None}], '所属厂站': [{'type': 'attr', 'id': 'attr_ST_ID'}], '所属电厂': [{'type': 'attr', 'id': 'attr_ST_ID'}], '属于哪个厂站': [{'type': 'attr', 'id': 'attr_ST_ID'}], '属于哪个电厂': [{'type': 'attr', 'id': 'attr_ST_ID'}], '电压等级': [{'type': 'attr', 'id': 'attr_VOLTAGE_TYPE'}], '儿子': [{'type': 'relation', 'id': 'son'}], '父亲': [{'type': 'relation', 'id': 'father'}], '爸爸': [{'type': 'relation', 'id': 'father'}], '是': [{'type': 'predicate', 'id': 'is'}], '为': [{'type': 'predicate', 'id': 'is'}], '不是': [{'type': 'predicate', 'id': 'isnot'}], '不为': [{'type': 'predicate', 'id': 'isnot'}]})
defaultdict(<class 'dict'>, {'father_son_relation': {'test': <function test at 0x7f88a967e940>}, 'test': {'ppp': <function ppp at 0x7f88a967e9d0>}})
[('刘备', {'type': 'person', 'id': '2'}, 0, 2), ('诸葛亮', {'type': 'person', 'id': '3'}, 3, 6), ('新野', {'type': 'place', 'id': '3'}, 7, 9), ('曹操', {'type': 'person', 'id': '1'}, 17, 19)]
[]
[{'name': 'father_son_relation', 'slots': {'son': '曹丕', 'father': '曹操'}}]
{'father_son_relation': {'test': {'father': '曹操', 'son': '曹丕'}}}
[{'name': 'father_son_relation', 'slots': {'father': '曹操', 'son': '曹丕'}}]
{'father_son_relation': {'test': {'father': '曹操', 'son': '曹丕'}}}
[{'name': 'test', 'slots': {'person': '曹操', 'ttt': '人物'}}]
{'test': {'ppp': {'person': '曹操', 'ttt': '人物'}}}
注意事项
- csv文件和json文件中必须包含name和id两个属性或列。
更新日志
- v0.1.1 初始版本
- v0.2.0 增加域(domain)这一概念
参考
- keyue123/poemElasticDemo: 基于Elasticsearch的KBQA
- liuhuanyong/QAonMilitaryKG: QAonMilitaryKG,QaSystem based on military knowledge graph that stores in mongodb which is different from the previous one, 基于mongodb存储的军事领域知识图谱问答项目,包括飞行器、太空装备等8大类,100余小类,共计5800项的军事武器知识库,该项目不使用图数据库进行存储,通过jieba进行问句解析,问句实体项识别,基于查询模板完成多类问题的查询,主要是提供一种工业界的问答思想demo。
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
lightNLU-0.2.1.tar.gz
(13.1 kB
view details)
Built Distribution
lightNLU-0.2.1-py3-none-any.whl
(19.5 kB
view details)
File details
Details for the file lightNLU-0.2.1.tar.gz
.
File metadata
- Download URL: lightNLU-0.2.1.tar.gz
- Upload date:
- Size: 13.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d05ad1171fbead8d879362bc83afd12a3e2d77ea3c134de62c79d28f3ffaff77 |
|
MD5 | 5a2951bcc9f9ac611a5d7f625f45fd2e |
|
BLAKE2b-256 | 4e1776ca3ff5b53ad88c18d2230891581f4e500410b758401c54cb456ce1d41d |
File details
Details for the file lightNLU-0.2.1-py3-none-any.whl
.
File metadata
- Download URL: lightNLU-0.2.1-py3-none-any.whl
- Upload date:
- Size: 19.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54fbfa6d52c88474efed71dc8327c54f45f2ee0279fd779450647384ca2481c3 |
|
MD5 | c9ffa55479cb1432410c057e54189c71 |
|
BLAKE2b-256 | ce6f687dbe61a4246f4fa2e62b0a4c43f5114b26426856d77698cd03f07a1ce0 |