Skip to main content

A handy way to interact with an SQLite database from Python

Project description

Litequery

Litequery is a minimalist library for interacting with SQLite in Python. It lets you define your queries once and call them as methods. No ORM bloat, just raw SQL power, with the flexibility to operate in both asynchronous and synchronous modes.

Why Litequery?

  • Simplicity: Define SQL queries in .sql files. No complex ORM layers.
  • Async first: Built for modern async Python, but also supports synchronous operations for traditional use cases.
  • Flexible: Supports different SQL operations seamlessly.

Installation

pip install litequery

Getting Started

Define Your Queries

Create a queries.sql file. Name your queries using comments and write them in pure SQL.

-- name: get_all_users
SELECT * FROM users;

-- name: get_user_by_id^
SELECT * FROM users WHERE id = :id;

-- name: get_last_user_id$
SELECT MAX(id) FROM users;

-- name: insert_user<!
INSERT INTO users (name, email) VALUES (:name, :email);

-- name: delete_all_users!
DELETE FROM users;

Using Your Queries

Define your database and queries, and then call them as methods. Choose async or sync setup based on your needs. It's as straightforward as it sounds.

import litequery
import asyncio


async def main():
    lq = litequery.setup("database.db", "queries.sql", use_async=True)
    await lq.connect()

    user_id = await lq.insert_user(name="Alice", email="alice@example.com")
    print(user_id)

    users = await lq.get_all_users()
    print(users)

    user = await lq.get_user_by_id(id=user_id)
    print(user)

    rows_count = await lq.delete_all_users()

    await lq.disconnect()


asyncio.run(main())

Transaction Support

Litequery also supports transactions in both async and sync contexts, allowing you to execute multiple queries atomicaly.

import litequery
import asyncio


async def main():
    lq = litequery.setup("database.db", "queries.sql")
    await lq.connect()

    try:
        async with lq.transaction():
            await lq.insert_user(name="Charlie", email="charlie@example.com")
            raise Exception("Force rollback")
            await lq.insert_user(name="Eve", email="eve@example.com")
    except Exception:
        print("Transaction failed")

    users = await lq.get_all_users()
    print(users)

    await lq.disconnect()


asyncio.run(main())

Wrapping Up

Litequery is all about simplicity and efficiency. Why wrestle with bloated ORMs when you can have raw SQL power? If you think there's a better way or have suggestions, let's hear them. Happy querying!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

litequery-0.5.0.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

litequery-0.5.0-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file litequery-0.5.0.tar.gz.

File metadata

  • Download URL: litequery-0.5.0.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for litequery-0.5.0.tar.gz
Algorithm Hash digest
SHA256 4a390d97e22dea0d32282dbc2934816e20be02905b797fa7faf0e171686ef194
MD5 ea9dedcffa01d4bf60770d43af2a677b
BLAKE2b-256 e45c2fa93a96fb82cd570b865e47567b3f1cba52a8883aeb932c94424a0b2cfc

See more details on using hashes here.

File details

Details for the file litequery-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: litequery-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for litequery-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1d90d6a84cdaf9abea0e12668a6ecaa9a572ff2b58f5bf76a526ec9ca4982810
MD5 509b801fe19f15256287845fbb1035d7
BLAKE2b-256 84fc096132c23d9bf88879ecac537939bb9f221f379c74aec22104c322cdc4d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page