Skip to main content

llama.cpp (GGUF) conversion for pypi

Project description

This is a fork of llama-cpp-python for the sole purpose of making gguf conversion binaries installable from pip.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_cpp_conv-0.2.58.tar.gz (38.1 MB view details)

Uploaded Source

Built Distributions

llama_cpp_conv-0.2.58-pp39-pypy39_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

llama_cpp_conv-0.2.58-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llama_cpp_conv-0.2.58-pp39-pypy39_pp73-manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

llama_cpp_conv-0.2.58-pp38-pypy38_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

llama_cpp_conv-0.2.58-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llama_cpp_conv-0.2.58-pp38-pypy38_pp73-manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

llama_cpp_conv-0.2.58-cp311-cp311-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

llama_cpp_conv-0.2.58-cp311-cp311-win32.whl (2.5 MB view details)

Uploaded CPython 3.11 Windows x86

llama_cpp_conv-0.2.58-cp311-cp311-musllinux_1_1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

llama_cpp_conv-0.2.58-cp311-cp311-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

llama_cpp_conv-0.2.58-cp311-cp311-manylinux_2_17_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llama_cpp_conv-0.2.58-cp311-cp311-manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

llama_cpp_conv-0.2.58-cp310-cp310-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

llama_cpp_conv-0.2.58-cp310-cp310-win32.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86

llama_cpp_conv-0.2.58-cp310-cp310-musllinux_1_1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

llama_cpp_conv-0.2.58-cp310-cp310-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

llama_cpp_conv-0.2.58-cp310-cp310-manylinux_2_17_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llama_cpp_conv-0.2.58-cp310-cp310-manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

llama_cpp_conv-0.2.58-cp39-cp39-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

llama_cpp_conv-0.2.58-cp39-cp39-win32.whl (2.5 MB view details)

Uploaded CPython 3.9 Windows x86

llama_cpp_conv-0.2.58-cp39-cp39-musllinux_1_1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

llama_cpp_conv-0.2.58-cp39-cp39-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

llama_cpp_conv-0.2.58-cp39-cp39-manylinux_2_17_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llama_cpp_conv-0.2.58-cp39-cp39-manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

llama_cpp_conv-0.2.58-cp38-cp38-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

llama_cpp_conv-0.2.58-cp38-cp38-win32.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86

llama_cpp_conv-0.2.58-cp38-cp38-musllinux_1_1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

llama_cpp_conv-0.2.58-cp38-cp38-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

llama_cpp_conv-0.2.58-cp38-cp38-manylinux_2_17_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llama_cpp_conv-0.2.58-cp38-cp38-manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

File details

Details for the file llama_cpp_conv-0.2.58.tar.gz.

File metadata

  • Download URL: llama_cpp_conv-0.2.58.tar.gz
  • Upload date:
  • Size: 38.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for llama_cpp_conv-0.2.58.tar.gz
Algorithm Hash digest
SHA256 4723f8e8e14d6c1e385cbac73a43aa767ca42110b5e23b68aa847c864c2d1770
MD5 a1d2148cb94986aa9741382511ccba5a
BLAKE2b-256 4fca521ff1d4d4216151d5955d7c0263fdd3c2f828d190dbc9e89108553674ff

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 990f41089a391942f802d2983750a793cf68d990dbc3212342534b8760348e88
MD5 a4bc80a6c113090739906463f5872c71
BLAKE2b-256 b65fa73a977fbd08905d5acb46681dcd4473e956ce0bb1a08ff9971e77ff2b2c

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 101edf49fb71dc1e96b4f534a8d0be3488f55db996994c784709e481429756cb
MD5 a3908c64a1c04a8c7e69de2d9f90532c
BLAKE2b-256 833e13baae1cd753ef1202a55ef957714f7668280f8c0948d2f1ff30c617840e

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-pp39-pypy39_pp73-manylinux_2_17_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-pp39-pypy39_pp73-manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 55384044c6dd4a31c5a5ca444ff0ccc234851dc112a4458ac114c679282fb5a7
MD5 91ec9568a5644c9f5934a7b3348f97e0
BLAKE2b-256 b986538b423a55014d011f63d873a8a2f00a49563ec7fedd8d415071a892196f

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f50f147de22efd4cc50f9597efd3ed7222428e058558a07458a2cd53cf7d9ebb
MD5 feaa64b2b755e2a54e4df1f8741377fb
BLAKE2b-256 1bd070eeabf3337e955d05b9a350529f3b10d28adac9c134b529e5c7a03884d2

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 a4eb9a5e4343785c5a51407cc6d6060b1a44ee7f65269b183bfe9e697a90a5d4
MD5 df21d1ed38fd621231fad2c50e9ebf20
BLAKE2b-256 810931a12ce550a93cd11fc517faf240885fdaca416085a7dc0f7c010e2b90e0

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-pp38-pypy38_pp73-manylinux_2_17_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-pp38-pypy38_pp73-manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 e4d8ee17cbc613ab738bdbce38a5d87c3508749bc38d7eadc6df08f4eced41b5
MD5 c35a6273209fc598b83711b86a01e06e
BLAKE2b-256 3b0a0da31efd1cd1f9ca29b88ecdf55c7185db93f5892e5ded380a2e3ada3a14

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5c6a22fcb6eba261d9e9e1cfa978ba4a407db4819a1418ad6272e70ffe22ea4e
MD5 59cd98526dc499ab10caf79678a29547
BLAKE2b-256 163420608dbe99bfc145ac6d23c9751a2080c70b086ee8fb0d3e4b196629e33e

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d576ec5dea3f8e2144ed1d4b7a353708190917a387139d179fac82d211a313ec
MD5 1687ded3289ab40ffed1875d84ad2437
BLAKE2b-256 736bc2e1527e051ba024adb526465fd565b657f68f15c2ed53274c1c0d39ccfa

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f551f45fd5212536c0e652a3a372fbb757cb880306df3eb81db1dfad88f4423b
MD5 1ed25bb9e0a4fb42e755ad0c4d1639b7
BLAKE2b-256 e5a77aa3000f8fe7d778e5299f6f07cfcd7cb03144c7a3e8c9c0989ee11bc60d

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b83f158413d8a4e80c893133fca61d6d88e697ecf0635e193a263eda5d9afe0f
MD5 e4266e5eb78227d55a8e8f3644b3ddf1
BLAKE2b-256 a1e28feb22cf659f5bb40e0756bdd6716bd558b13eecce3fed1bfe0155d471f5

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4f5d85fe1d5212f096bc21c0bd57f48c74ce38c8d7262fb678a630185b3702b6
MD5 3ab54974e27128db12192309bba4928f
BLAKE2b-256 255d2f264c0da2778630862fd97833ae2ad216c1281e7957f754d0bf8d25b13f

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp311-cp311-manylinux_2_17_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp311-cp311-manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 bfa5162d43d52567f8e51fcf674713debd23ce13e172bedafd42709130bc7aa4
MD5 a2cc9769671969ca89985d1874f7cf63
BLAKE2b-256 20afd74a80edbccfe697a9427b10fe3f56ab50727bc7c48ec2cb8728cc865c59

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 48d06e5c6f31d7ca40e0d0a15651d4204a745796ef8a4badf8b74b02a3a27c04
MD5 49f711dfef1c0a49e1a1b32ad16801e6
BLAKE2b-256 9a4a512abdbfdf7f20d953fe27a28a04be7bc29d274e5ca08148254c6dd75b65

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 422edf811a72af3a98549d15456b875ba87652d1254f8e2f573f8d642fa5ef5c
MD5 8841b32cc7ebbcf0b86db3ded09c7e4e
BLAKE2b-256 a10b63b3113d3ce965781e00fe9299c0ed720b17bdc14d83c3f72ad60abd14e0

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3c4f144397c436aafc8494111e00458529c02e7ec8fbacdd62372aae5c43c9a9
MD5 124a777071489031076a34ad45579ff5
BLAKE2b-256 fcd313716c0e84f5cd88d31be3d354760d7dfdd319d73c4fc6f86262fa3cbb7f

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d1477f73c4fdfacc68c4ad8b4758c18d14cfcfed4983dd3996a4dfecfca06425
MD5 20011b2dede7c2a71c556e2082e258c9
BLAKE2b-256 7b744559c22198d50b5890ea892a72ea9a9b0970b5a6474f72d9233252cf3f2b

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 8a616678b573b7b535aaef52a0c12ca7645e644138d22a9787524fba006fb28c
MD5 74c785a55c0f45bdcb941dc3d348a2c3
BLAKE2b-256 e823f992eeb566998a6fbc77e5aa045b4c2527b3951b620f29d807aca777aede

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp310-cp310-manylinux_2_17_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp310-cp310-manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 c83de6e0be3a82a07748aec9aa1c3d6429a6fe3ab6578b4839cf3645cd7d8ee9
MD5 599db9db166ad52db7b6b9b3ed5daea8
BLAKE2b-256 b22b4e12c57c053cce7ff1c23f33331038dc56d036e94f7d56a4ee83d7499fcd

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a2ac74e6bb62c0b0d334dee4229a341d5269e4f53701ccb82e64cfda27af3ecc
MD5 b9c7e3d6d798d651fb4bc6edec78f9c7
BLAKE2b-256 e17065c182d9a38b0c1be59516b03c9591e7480b00b9adc6a9d66784e4fc2472

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a9ac128802194f6feef9145a4462fb4d8cfa9d4ee4bbb0b0ad484568c6b92695
MD5 6aba1fc911d7db461e772ed9955db0eb
BLAKE2b-256 2b2863fb5b15d0fab1ac96197066429678ba3adbba0b2e0801ddc101a44a81eb

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 536d5f638977f2d3161ab59766738be2ce4a2cdac3344686f798c9c78f616ebc
MD5 d06a84a3be679ba5149eb939f32d3c0e
BLAKE2b-256 bae68925f6b50bfab3a78ac5663574ad5bc9a0a86115392f8e309cce6ebd9e11

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 00806441b4441f3ad2bf77af080f21119ad7555b489237cc6f9014dedfe4407a
MD5 6806d770b4b3cfc770048a797d793de1
BLAKE2b-256 1647b9de87b44b7c3c1fcce6640c411339f30e4e54af6be0096c3a697f7e20d2

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4c6fc379d87978800e3d321f1a5668d75ef1613e226425123617015c04c2201d
MD5 bf0c01385de5d8c6b8d66b466a855913
BLAKE2b-256 6cb514e25114a437ce4adee60bd610d8ec08a6fa765c2569069732ac91d3a0bc

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp39-cp39-manylinux_2_17_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp39-cp39-manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 0a0840fc298cc07a909de352e28d59ee47ebb26e8550caabe346f7bd864991d1
MD5 aa2c5be8e3616bd68994d3b7a4c628ba
BLAKE2b-256 0f40cb3adb561e4c28ae7ce3285af6f9c9b93afc5cc75841490dafc9dd354908

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7be8e0c4066dd7b6f42ac113a70fdd4aae5e2b811022aa72c91149c619668a05
MD5 800ad985c42c384fb59914cda254734d
BLAKE2b-256 bdecafc76da8a0efdc8221300cf445587a77dc90f6f3c28b29054c9037aa6954

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8bfc13d86545d4ef32e9b6206c49378314aeebfd5a545cc4da7f35ff72a393af
MD5 51398bad5c52746d7f0a8e2d6930c191
BLAKE2b-256 f10e8cb195a904c055210096fbdf0f1d1b6ddc1a45d19db827403d7d9fe59847

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7438e55cea2781cc98809d0443b330df195b54736fe00adc46149e8d9e269188
MD5 2e9c52c75ca838e0229904f545968537
BLAKE2b-256 aa0b05ea892423b32b2b2b03ac70074d76577ebea6d86f4a9dc21fe91c52e4d9

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7026d0448706044257e96134ec3b405b4eb0bddf55692cc1abee792370bcf11b
MD5 70f845d619271efe6b33843e5707cda2
BLAKE2b-256 1c79d88f7649838a22ec606910c220431eccb9977f857a93c44bdc335006fb49

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp38-cp38-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp38-cp38-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b50bc474e2452761272626f7e71fd345e42ebcfaa90d11646d743f2b184be495
MD5 1198587ac1907fd89f2f774df9e30d5d
BLAKE2b-256 a5d8d4925410137f175c6f5bcf82ad10464f1182a25d1cc481c2f52f9473837f

See more details on using hashes here.

File details

Details for the file llama_cpp_conv-0.2.58-cp38-cp38-manylinux_2_17_i686.whl.

File metadata

File hashes

Hashes for llama_cpp_conv-0.2.58-cp38-cp38-manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 b1bfc3232a162cf9d0d47275fce63c18ed18c8d7aeda272d48d37beaa9342b4c
MD5 2f4af4a8eda1de107eb529f49ca6b3ff
BLAKE2b-256 f04794dddc0c0c681b64d5cbc1899ab421a6985f6c3e374ed8fea9309e2115a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page