Skip to main content

A guidance compatibility layer for llama-cpp-python

Project description

llama.cpp Guidance

pypi version shield

The llama-cpp-guidance package provides an LLM client compatibility layer between llama-cpp-python and guidance.

Installation

The llama-cpp-guidance package can be installed using pip.

pip install llama-cpp-guidance

⚠️ It is highly recommended that you follow the installation instructions for llama-cpp-python after installing llama-cpp-guidance to ensure that you have hardware acceleration setup appropriately.

Basic Usage

Once installed, you can use the LlamaCpp class like any other guidance-compatible LLM class.

from pathlib import Path
from llama_cpp_guidance.llm import LlamaCpp
import guidance

guidance.llm = LlamaCpp(
    model_path=Path("../path/to/llamacpp/model.gguf"),
    n_gpu_layers=1,
    n_threads=8
)

program = guidance(
    "The best thing about the beach is {{~gen 'best' temperature=0.7 max_tokens=10}}"
)
output = program()
print(output)
The best thing about the beach is that there’s always something to do.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_cpp_guidance-0.1.2.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

llama_cpp_guidance-0.1.2-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file llama_cpp_guidance-0.1.2.tar.gz.

File metadata

  • Download URL: llama_cpp_guidance-0.1.2.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for llama_cpp_guidance-0.1.2.tar.gz
Algorithm Hash digest
SHA256 903f34c2052904646b0f0f4f257a784801089eb5faca1804f006fac1e8b786d2
MD5 36020481c91f8f936a80e877cb6efb48
BLAKE2b-256 5b4bf0e2391be107c9e826f0e187e9b03958380ff726e6131e5b32463b43ca0b

See more details on using hashes here.

File details

Details for the file llama_cpp_guidance-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_cpp_guidance-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 48808ea69536fcea314c3bb270a61fc7349552fba511febca11b5c2c03d85576
MD5 ec223d079d3f1d795a720ae18a13d367
BLAKE2b-256 026e9938266b0cd737942f4b5683f1b239364e292a37901b82ab10d00cc6cddc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page